
EE 4720 Homework 4 & 5 Solution Due: 23 April 1999

In all problems below assume there are no cache misses and that all register values are available at the beginning of execution.

Problem 1: Show a pipeline execution diagram for the first 41 cycles of the code below on a dynamically scheduled implementation of DLX in
which:

• There is one floating point multiply unit with a latency of 5 and an initiation interval of 2.

• There is a load/store functional unit with a latency of 1. The segments are labeled L1 and L2.

• The FP add functional unit has a latency of 3 and an initiation interval of 1.

• The integer functional unit has a latency of 0 and an initiation interval of 1.

• The functional units have reservation stations with the following numbers: integer, 6-9; fp add, 0-1; fp multiply, 2-3; load/store, 4-5.

• There is no reorder buffer.

• The branch delay is one. (There are no branch delay slots.)

• Ignore load/store ordering.
Initially all reservation stations are available.

LOOP:
addi r1, r1, #8
sub r2, r1, r3
lf f0, 0(r1)
multf f1, f0, f0
multf f2, f0, f1
sf 4(r1), f1
bneq r2, LOOP ! Assume always taken.
xor r4, r5, r6
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LOOP:
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
addi r1, r1, #8 IF ID 6:EX 6:WB IF ID 6:EX 6:WB IF ID
sub r2, r1, r3 IF ID 7:EX 7:WB IF ID 7:EX 7:EX 7:WB IF
lf f0, 0(r1) IF ID 4:L1 4:L2 4:WB IF ID 5:RS 5:L1 5:L2 5:WB
multf f1, f0, f0 IF ID 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3 2:WB

IF ID 2:RS 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3 2:WB
multf f2, f0, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS 3:M1 3:M1 3:M2 3:M2 3:M3 3:M3 3:WB

IF ID -----------------------> 3:RS 3:RS 3:M1 3:M1
sf 4(r1), f1 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:L1 4:L2 4:WB

IF -----------------------> ID 4:RS 4:L1 4:L2
bneq r2, LOOP IF ID IF ID
xor r4, r5, r6 IF x IF x

LOOP:
Cycle 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
addi r1, r1, #8 IF ID 6:EX 6:WB IF ID 6:EX 6:WB
sub r2, r1, r3 IF ID 7:EX 7:WB IF ID 7:EX 7:EX 7:WB
lf f0, 0(r1) IF ID 4:L1 4:L2 4:L2 4:WB IF ID 5:RS 5:L1 5:L2 5:WB
multf f1, f0,f0 2:M3 WB IF ID 2:RS 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3 2:WB

IF ID 2:RS 2:RS 2:M1 2:M1 2:M2 2:M2 2:M3 2:M3
multf f2, f0,f1 3:RS 3:M1 3:M1 3:M2 3:M2 3:M3 3:M3 3:WB

IF ID ---> 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS 3:M1 3:M1 3:M2 3:M2 3:M3 3:M3 3:WB
IF ID -----------------------> 3:RS 3:RS

sf 4(r1), f1 4:RS 4:L1 4:L2 4:WB IF ---> ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:L1 4:L2 4:WB
IF -----------------------> ID 4:L1

bneq r2, LOOP ID IF ID IF ID
xor r4, r5, r6 IF x IF x IF

Note: In cycle 12 the load waits an extra cycle because L1 is being used by the store. (As a general rule, the instruction waiting longer should start first. When contending for
the CDB, the functional unit with the longer latency gets priority.)
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Problem 2: Determine the CPI for a large number of iterations of the loop above (or give a good reason why it would be very difficult to determine
the CPI).

Consider the state of the machine when fetching the first instruction of the loop, addi. It is the same at cycle 8 and 30 (for example, in both cases the first multiply from the
previous iteration started the second multiply stage, the sf and second multf are sitting in reservation stations, and the number of free reservation stations at each functional unit
is the same in both cycles). There are 7 instructions per iteration, so the CPI is (30− 8)/(2× 7) = 1.571 CPI.

Problem 3: What are the minimum number of reservation stations of each type needed so that the code above executes at maximum speed? What
is the CPI at maximum speed? (This part was not in the problem as originally assigned:) The CDB can handle any number of writebacks per cycle
and there are an unlimited number of functional units.

The problem as originally assigned was more tedious than intended. To solve it one would need to find a repeating pattern of iterations. Because
of contention for the CDB, the repeating pattern does not occur in the first few iterations and so one would have to tediously construct the diagram
for many iterations.

To solve this problem construct a pipeline execution diagram assuming an unlimited number of reservation stations. The diagram should continue until every instruction in the
first iteration completes. (This loop does not have inter-iteration dependencies, but if it did [e.g., if the second multiply were multf f2, f1, f2] the diagram would continue
until every instruction in the second iteration finished.) From the diagram find the maximum number of reservation stations used. For the code above the diagram should be continued
until cycle 18 (a few extra cycles are shown):

LOOP:
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
addi r1, r1, #8 IF ID EX WB IF ID EX WB IF ID EX WB
sub r2, r1, r3 IF ID EX WB IF ID EX WB IF ID EX WB
lf f0, 0(r1) IF ID L1 L2 WB IF ID L1 L2 WB IF ID L1 L2 WB
multf f1, f0, f0 IF ID RS M1 M1 M2 M2 M3 M3 WB

IF ID RS M1 M1 M2 M2 M3 M3 WB
IF ID RS M1

multf f2, f0, f1 IF ID RS RS RS RS RS RS M1 M1 M2 M2 M3 M3 WB
IF ID RS RS RS RS RS RS M1 M1 M2

IF ID RS
sf 4(r1), f1 IF ID RS RS RS RS RS L1 L2 WB

IF ID RS RS RS RS RS L1 L2 WB
IF ID

bneq r2, LOOP IF ID IF ID IF
xor r4, r5, r6 IF x IF x

Two integer RS are needed (cycle 3), zero FP add RS are needed, three FP multiply units are needed (cycle 14),
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Problem 4: The code below executes on a machine similar to the type described in the first problem except that it uses a reorder buffer. Draw a
pipeline execution diagram for the code below, be sure to show when each instruction commits. Remember that instructions stall in the functional
unit if they are not granted access to the CDB.
LOOP:
lf f0, 0(r1)
multf f1, f0, f0
multf f2, f0, f1
addf f3, f3, f0
lf f4, 8(r1)
sf 4(r1), f1
multf f1, f4, f4
multf f2, f4, f1
addi r1, r1, #16
sub r3, r4, r5
xor r6, r7, r8
or r9, r10, r11

Since a re-order buffer is being used instruction results will be identified by their reorder buffer entry number rather than their reservation station number. For that reason
reservation stations are only held until execution initiation. For example, the first multf only needs a RS in cycle 3.

LOOP:
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
lf f0, 0(r1) IF ID L1 L2 WC
multf f1, f0, f0 IF ID 2:RS M1 M1 M2 M2 M3 M3 WC
multf f2, f0, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS M1 M1 M2 M2 M3 M3 WC
addf f3, f3, f0 IF ID A1 A2 A3 A4 WB C
lf f4, 8(r1) IF ID L1 L2 WB C
sf 4(r1), f1 IF ID 4:RS 4:RS 4:RS L1 L2 WB C
multf f1, f4, f4 IF ID M1 M1 M2 M2 M3 M3 WB C
multf f2, f4, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS M1 M1 M2 M2 M3 M3 WB C
addi r1, r1, #16 IF ID EX WB C
sub r3, r4, r5 IF ID EX ---> WB C
xor r6, r7, r8 IF ID 7:RS EX ---> WB C
or r9, r10, r11 IF ID 6:RS 6:RS EX ---> WB C

Problem 5: Consider the code execution from the problem above. Suppose there is an exception in the L2 segment executing the second lf. At
what cycle would the trap instruction be inserted? What might go wrong if a reorder buffer had not been used?

The trap will be inserted when lf reaches the head of the reorder buffer, at cycle 18. If a reorder buffer were not used and the preceding multiply raised an exception, the trap
handler for lf might run before the one for multf.
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Problem 6: Show the execution of the code below on a dynamically scheduled 4-way superscalar machine using a reorder buffer. Instruction fetch
is aligned. There is one of each floating-point functional unit, with latencies and initiation intervals given in the first problem. There are four integer
execution units. The reservation station numbers are as given in the first problem.
LOOP: = 0x1008
lf f0, 0(r1)
multf f1, f0, f0
multf f2, f0, f1
addf f3, f3, f0
lf f4, 8(r1)
sf 4(r1), f1
multf f1, f4, f4
multf f2, f4, f1
addi r1, r1, #16
sub r3, r4, r5
xor r6, r7, r8
or r9, r10, r1

LOOP: = 0x1008 = 1 0000 0000 1000
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
lf f0, 0(r1) IF ID L1 L2 WC
multf f1, f0, f0 IF ID 2:RS 2:RS M1 M1 M2 M2 M3 M3 WC
multf f2, f0, f1 IF ID 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS 3:RS M1 M1 M2 M2 M3 M3 WC
addf f3, f3, f0 IF ID 0:RS A1 A2 A3 A4 WB C
lf f4, 8(r1) IF ID L1 L2 WB C
sf 4(r1), f1 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS L1 L2 WB C
multf f1, f4, f4 IF ID 2:RS 2:RS M1 M1 M2 M2 M3 M3 WB C
multf f2, f4, f1 IF ID --------> 2:RS 2:RS 2:RS 2:RS 2:RS 2:RS M1 M1 M2 M2 M3 M3 WC
addi r1, r1, #16 IF ID EX WB C
sub r3, r4, r5 IF ID EX WB C
xor r6, r7, r8 IF --------> ID EX WB C
or r9, r10, r11 IF --------> ID EX WB C

In the diagram above, WC indicates that writeback and commit occur in the same cycle. Note that since instructions are fetched in aligned blocks of four, only two useful
instructions are fetched in cycle 0.
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Problem 7: (Modified 12 November 1999) Rewrite the code below for the VLIW DLX ISA presented in class. Instructions can be rearranged and
register numbers changed. In order of priority, try to minimize the number of bundles, minimize the use of the serial bit, and maximize the value of
the lookahead field. When determining the lookahead assume that any register can be used following the last bundle in your code.
LOOP:
lf f0, 0(r1)
multf f1, f0, f0
multf f2, f0, f1
addf f3, f3, f0
lf f4, 8(r1)
sf 4(r1), f1
multf f1, f4, f4
multf f2, f4, f1
addi r1, r1, #16
sub r3, r4, r5
xor r6, r7, r8
or r9, r10, r11

Solution:

LOOP:
{ P 0
lf f0, 0(r1)
lf f4, 8(r1)
sub r3, r4, r5
}
{ P 0
multf f1, f0, f0
multf f11, f4, f4
addf f3, f3, f0
}
{ P 1
sf 4(r1), f1
multf f12, f0, f1
multf f2, f4, f11
}
{ P 0
addi r1, r1, #16
xor r6, r7, r8
or r9, r10, r11
}
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