
Problem 1 Part 1 Solution The output of a simulator showing relevant state changes appears
below.

** Time: 0

Task A created.

Task A changing from Ready to Run

** Time: 10

Task B created.

** Time: 20

Task A requests unavailable resources.

Task A changing from Run to Wait

Task B changing from Ready to Run

** Time: 22

Task C created.

Task B changing from Run to Ready

Task C changing from Ready to Run

** Time: 30

Resources now available for task A.

Task A changing from Wait to Ready

** Time: 31

Task C finishes normally.

Task C changing from Run to Zombie

Task A changing from Ready to Run

** Time: 44

Task A finishes normally.

Task A changing from Run to Zombie

Task B changing from Ready to Run

** Time: 53

Task B finishes normally.

Task B changing from Run to Zombie

1

Problem 1 Part 2 Solution The output of a simulator showing relevant state changes appears
below.

** Time: 0

Task A created.

Task A changing from Ready to Run

** Time: 10

Task B created.

** Time: 10

Task A quantum expired.

Task A changing from Run to Ready

Task A changing from Ready to Run

** Time: 20

Task A requests unavailable resources.

Task A changing from Run to Wait

Task B changing from Ready to Run

** Time: 22

Task C created.

** Time: 30

Resources now available for task A.

Task A changing from Wait to Ready

** Time: 30

Task B quantum expired.

Task B changing from Run to Ready

Task C changing from Ready to Run

** Time: 39

Task C finishes normally.

Task C changing from Run to Zombie

Task A changing from Ready to Run

** Time: 49

Task A quantum expired.

Task A changing from Run to Ready

Task A changing from Ready to Run

** Time: 52

Task A finishes normally.

Task A changing from Run to Zombie

Task B changing from Ready to Run

** Time: 53

Task B finishes normally.

Task B changing from Run to Zombie

2

Problem 2 Solution Have C arrive before A starts I/O, for example at time 19. Task A will
then have to wait for C to �nish before making its I/O request only to wait again for the I/O to
�nish. Such a situation is shown in the simulator output below. An intelligent scheduler would not
preempt A when C arrived despite the fact that C's deadline is sooner.

** Time: 0

Task A created.

Task A changing from Ready to Run

** Time: 10

Task B created.

** Time: 19

Task C created.

Task A changing from Run to Ready

Task C changing from Ready to Run

** Time: 28

Task C finishes normally.

Task C changing from Run to Zombie

Task A changing from Ready to Run

** Time: 29

Task A requests unavailable resources.

Task A changing from Run to Wait

Task B changing from Ready to Run

** Time: 39

Resources now available for task A.

Task A changing from Wait to Ready

Task B changing from Run to Ready

Task A changing from Ready to Run

** Time: 52

Task A finishes normally.

Task A changing from Run to Zombie

Task B changing from Ready to Run

** Time: 53

Task B finishes normally.

Task B changing from Run to Zombie

3

