02-1 02-1	02-2 02-2
Process State, Sensors, and Interfacing	Process State and Process Variables
Function of sensors: convert physical quantity to information.	The process state is the current condition of the process, down to
Information will (usually) be read by computer via an interface.	infinitesimal detail.
Ultimately, the information, in the desired form, will be stored in a memory location.	The process variable is a part or characterization of a process state, usually in terms of a common measure.
The following steps are typical:	For example, consider a coffee maker.
1: A transducer converts process state to a raw electrical quantity.	<u>Process state:</u> amount of water in carafe, water temperature, chemical description of water in carafe, type of coffee beans,
 A conditioning circuit converts the raw electrical quantity. 	etc.
electrical quantity.	<u>Process variable</u> : temperature of water.
3 : An analog-to-digital converter (ADC) converts the useful electrical quantity to information.	<u>Process variable value:</u> 70 °C. Characteristics
4: A <i>buffer</i> and <i>interface</i> store, format, and present the information to a computer.	It is impossible to know the complete process state (because of
5: An <i>interface routine</i> reads the information, converts it to the desired form, and stores it in the desired place.	infinite detail). It is impossible to know the exact value of a process variable.
	A process variable value, however, can be determined to a high degree of precision.
02-1 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from Isli02. 02-1	02-2 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from Isli02. 02-2
02-3 02-3	02-4 02-4
Dimensions	Algebraic Manipulation of Dimensions
Basics	In expressions, dimensions are manipulated in the same way as num-
A process variable's value is usually expressed as the product of a number and a dimension.	bers and variables. For example:
For example, let process variable T be the temperature of water in a coffee maker carafe.	$\frac{3 \text{ km}}{5 \text{ MPH}} = \frac{3 \text{ km hr}}{5 \text{ Mi}} = \frac{3 \text{ km hr}}{5 \text{ Mi}} \frac{\text{Mi}}{1.6 \text{ km}} = \frac{3}{8} \text{ hr}.$
Then a value for T might be 60 °C.	Graphs of Values
An equivalent value might be $T = 333.15$ K.	Axes will be labeled with a symbol divided by a dimension.
Notation	For example, x/V or $R/k\Omega$.
Dimensions will be written in Roman (upright) type. For example, mA, V, and m.	The numbers on the axis are then dimensionless.
Symbols representing values (variables) will be written in italic type: T, x, and R .	
Thus, $3VV$ means "three vee volts."	

02-3

02-4

Transducer:

Usually from...

Transducer Modeling

another.

...some useful electrical quantity.

Symbol $H_{\rm t}$ denotes the function.

... of the transducer with function $H_{\rm t}$.

Let x be a process variable.

Then $H_t(x)$ is the output...

Transducers

For example, a transducer might convert temperature to resistance.

Mapping (function) from process variable to electrical quantity.

...a physical quantity which is a process variable to...

Device which converts a physical quantity from one form to

02-5

02-6

02-6

02-8

Example

A variable resistor can be used as a transducer.

Consider a variable resistor which consists of a slider which can move over a distance of 15 mm while resistance varies linearly from 0 to $10 \text{ k}\Omega$.

Process variable: position of slider, x.

Mapping:
$$H_{\rm t}(x) = x \frac{10 \, \mathrm{k}\Omega}{15 \, \mathrm{mm}}$$

Process variable value approximated from transducer output.

Let $y = H_t(x)$ where H_t and x are as above.

Quantity y is a resistance.

The position x is found by inverting $H_{\rm t}:$

 $H_{\rm t}^{-1}(y)=y\frac{15\,{\rm mm}}{10\,{\rm k}\Omega}$

(In this case the process variable is not approximated.)

The process of finding the inverse is equivalent to solving for x in the equation $y=x\frac{10\,\mathrm{k}\Omega}{15\,\mathrm{mm}}.$

02-5	EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from lsli02.	02-5

Conditioning Circuits

Conditioning circuits might have to do one or more of the following:

• Detect tiny changes in resistance (e.g., 100.1 to 100.2Ω).

The symbol H_c will be used for the conditioning circuit's function. An amplifier is a simple conditioning circuit: $H_c(v) = Av$, where A,

For example, if x is a process variable, then $H_t(x)$ is the transducer output and $H_c(H_t(x))$ is the conditioning-circuit output.

The combination of transducer and conditioning circuit is referred to

• Correct for nonlinearities in the transducer function.

The output of a transducer is a raw electrical quantity.

It might have to amplified or otherwise processed.

• Add an offset to the transducer output.

the gain, is a dimensionless number.

This is done by conditioning circuits.

• Convert resistance to voltage.

• Amplify a tiny voltage.

• Other functions.

as a sensor.

02-7

02-8

02-6

Analog to Digital Conversion

EE 4770 Lecture Transparency, Formatted 13:25, 23 December 1997 from lsli02

Conditioning-circuit output is usually fed to an ADC.

An analog-to-digital converter converts electrical quantities to information quantities.

Input is usually a voltage, output is usually a binary number.

Symbol $H_{ADC}(v)$ will be used for an ADC function.

Standard ADC Function

Since most ADCs will convert voltage to integers a standard function will be used.:

 $H_{\text{ADC}(h,b)}(v) = \left| \frac{v}{h} (2^b - 1) \right| \mod 2^b,$

where h is a voltage and b is an integer.

This ADC would convert voltages in the range 0 to h (inclusive) to a binary number from 0 to $2^b - 1$.

For example, $H_{ADC(10 \text{ V},8)}(5 \text{ V}) = 127$ and $H_{ADC(17 \text{ V},16)}(1.3 \text{ V}) = 5011$.

02-7

Purpose

Notation

Sensors

02-7

02-8

			Interface Routine	
Buffering is the short-term storing information.		He	ere we will consider the ultimate destination of a process-variable value to be a memory location.	
Two reasons for buffering the value of a process variable:		Tł	he following is done to transfer a value from the interface to the	
The value of the variable <i>at a particular time</i> is needed. (T value is buffered at that time.)	The		memory location:	
The value of a variable is only valid at certain times. (The valid is buffered when it is valid.)	lue		1: The interface routine makes a system call to read the interface. raw=readInterface();	
The buffer itself can be a simple flip-flop, a register, a RAM, etc.		:	2: The interface routine, or some other code, applies a function, $H_{\rm f}$ to the value read.	
Usually, the contents of the buffer will be read by a computer throu an <i>interface</i> .	gh		3 : The result is written into the memory location.	
The interface presents the buffered data to the computer in so	me		<pre>theMemoryLocation=HsubF(raw);</pre>	
standard form. The computer is running some RT program. The RT program h	has		The function $H_{\rm f}$ puts the value into the final form. It may perform one or more of the following operations:	
 The computer is furning some fit program. The fit program has one or more interface routines. The interface could tell the RT program that data is available by making an interrupt request. 		 Convert the raw value to a floating-point quantity. (ADC output is usually an integer.) Correct for any nonlinearities in the transducer or conversion circuit. 		
or An interface routine could read the buffer without being alert	tod		• Convert the quantity to the desired dimensions. (<i>E.g.</i> , meters,	
by an external signal.	ieu		microns.)	
For example, it might read the buffer every millisecond.			In terms of the process variable, the final value written is:	
Sampling is the process of reading a process variable at regular int vals.	er-		$H_{ m f}(H_{ m ADC}(H_{ m c}(H_{ m t}(x))))$	
			Once written, the value is read by the parts of the RT system that figure out what's going on.	
02-9 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from kill02.	02-9	02-10	EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from lsli02.	02-10
02-11	02-11	02-12		02-12
02-11 The Conditioning Problem	02-11		ne Transducer	02-12
			he Transducer Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft. Use floats, guides, and cables to convert water level to shaft rotation.	
The Conditioning Problem Archetypical Problem: Design a system to write variable procVar with $H(x)$, the value of in, where process variable x is, x can take values in range $[x_{\min}, x_{\max}]$ and where $H(x) = \ldots$			Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning Problem Archetypical Problem: Design a system to write variable procVar with H(x), the value of in, where process variable x is, x can take values in	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning Problem Archetypical Problem: $Design \ a \ system \ to \ write \ variable \ procVar \ with \ H(x), \ the \ value \ of \ in \ \dots, \ where \ process \ variable \ x \ is \ \dots, \ x \ can \ take \ values \ in \ range \ [x_{min}, x_{max}] \ and \ where \ H(x) = \dots$ Example Problem: $Design \ a \ system \ to \ write \ variable \ water \ Level \ with \ H(x), \ an \ integration \ and \ an$	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
$\label{eq:conditioning Problem} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning Problem Archetypical Problem: $Design \ a \ system \ to \ write \ variable \ procVar \ with \ H(x), \ the \ value \ of \ in \ \dots, \ where \ process \ variable \ x \ is \ \dots, \ x \ can \ take \ values \ in \ range \ [x_{min}, x_{max}] \ and \ where \ H(x) = \dots$ Example Problem: $Design \ a \ system \ to \ write \ variable \ water \ Level \ with \ H(x), \ an \ integration \ giving \ the \ water \ level \ in \ meters, \ where \ process \ variable \ x \ is \ water \ level \ in \ meters, \ where \ process \ variable \ x \ is \ range \ [0 \ m, 1 \ m] \ and \ where \ H(x) = \frac{5x}{m}$. Solution Overview 1: Choose a transducer.	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning Problem Archetypical Problem: $Design \ a \ system \ to \ write \ variable \ procVar \ with \ H(x), \ the \ value \ of \ in \ where \ process \ variable \ x \ is \ x \ can \ take \ values \ in \ range \ [x_{min}, x_{max}] \ and \ where \ H(x) = \dots$ Example Problem: $Design \ a \ system \ to \ write \ variable \ waterLevel \ with \ H(x), \ an \ integration \ giving \ the \ water \ level \ in \ meters, \ where \ process \ variable \ x \ is \ water \ level \ in \ room \ 2147 \ CEBA, \ x \ can \ take \ on \ values \ in \ range \ [0 m, 1 m] \ and \ where \ H(x) = \frac{5x}{m}$. Solution Overview 1: Choose a transducer. A variable resistor connected to a float with \ cables. 2: Choose an ADC.	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning Problem Archetypical Problem: Design a system to write variable procVar with $H(x)$, the value of in, where process variable x is, x can take values in x range $[x_{\min}, x_{\max}]$ and where $H(x) = \ldots$ Example Problem: Design a system to write variable waterLevel with $H(x)$, an integiving the water level in meters, where process variable x is water level in room 2147 CEBA, x can take on values in x range $[0 \text{ m}, 1 \text{ m}]$ and where $H(x) = \frac{5x}{\text{m}}$. Solution Overview 1: Choose a transducer. A variable resistor connected to a float with cables. 2: Choose an ADC. Suppose an ADC with function $H_{ADC(5V,8)}$ is available. 3: Design a conversion circuit.	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning Problem Archetypical Problem: Design a system to write variable procVar with $H(x)$, the value of in, where process variable x is, x can take values in x range $[x_{\min}, x_{\max}]$ and where $H(x) = \ldots$ Example Problem: Design a system to write variable waterLevel with $H(x)$, an integrity giving the water level in meters, where process variable x is water level in room 2147 CEBA, x can take on values in x range $[0 m, 1 m]$ and where $H(x) = \frac{5x}{m}$. Solution Overview 1: Choose a transducer. A variable resistor connected to a float with cables. 2: Choose an ADC. Suppose an ADC with function $H_{ADC(5V,8)}$ is available. 3: Design a conversion circuit. This will convert resistance to voltage. 4: Design the buffer and interface.	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	
The Conditioning ProblemArchetypical Problem:Design a system to write variable procVar with $H(x)$, the value of in, where process variable x is, x can take values in range $[x_{\min}, x_{\max}]$ and where $H(x) = \ldots$ Example Problem:Design a system to write variable waterLevel with $H(x)$, an integ giving the water level in meters, where process variable x is water level in room 2147 CEBA, x can take on values in range $[0 \text{ m}, 1 \text{ m}]$ and where $H(x) = \frac{5x}{\text{m}}$.Solution Overview1: Choose a transducer. A variable resistor connected to a float with cables.2: Choose an ADC. Suppose an ADC with function $H_{ADC(5V,8)}$ is available.3: Design a conversion circuit. This will convert resistance to voltage.4: Design the buffer and interface. Details for this part will be skipped here.5: Write the function for computing the final value.	 the ger the		Use a variable resistor with the function $H_{\rm vr}(\theta) = \frac{\theta}{6} 100 \mathrm{k\Omega}$, where $\theta = [0, 6]$ is angle (in radians) of the shaft.	

02-10

02-9

02-9

02-12

02-12

⁰²⁻¹¹

02-13

The Conversion Circuit

The output of the conversion circuit will be:

$$H_{\rm c}(H_{\rm t}(x)) = H_{\rm c}(\frac{x}{\rm m}100\,{\rm k}\Omega)$$

For correct operation, the input to the ADC must be in the range of 0 to 5 V.

02-13

02-14

ADC, Buffering, and Final Processing

The ADC function is fixed at

 $H_{\text{ADC}(5\text{ V},8)}(v) = \left\lfloor \frac{v}{5\text{ V}}(2^8 - 1) \right\rfloor \mod 2^8 = \left\lfloor \frac{v}{5\text{ V}}255 \right\rfloor \mod 256.$

 $H_{\mathrm{ADC}(5\,\mathrm{V},8)}(H_{\mathrm{c}}(H_{\mathrm{t}}(x))) = \left\lfloor \frac{(x/\mathrm{m})5\,\mathrm{V}}{5\,\mathrm{V}}255 \right\rfloor \,\mathrm{mod}\,256 = \left\lfloor \frac{x}{\mathrm{m}}255 \right\rfloor \,\mathrm{mod}\,256.$

The ADC output is clocked into a buffer and then transfered to the computer through an interface.

Details of these parts will be covered later in the semester.

EE 4770 Lecture Transparency, Formatted 13:25, 23 December 1997 from Islio2.

A variety of conversion circuits could be used.

The simplest is a linear conversion from resistance to voltage.

$$\begin{split} H_{\rm c}(R) &= \frac{R}{100\,{\rm k}\Omega}5\,{\rm V}.\\ H_{\rm c}(H_{\rm t}(x)) &= \frac{(x/\,{\rm m})100\,{\rm k}\Omega}{100\,{\rm k}\Omega}5\,{\rm V}.\\ H_{\rm c}(H_{\rm t}(x)) &= (x/\,{\rm m})5\,{\rm V}. \end{split}$$

02-13

02-13

02-15

02-14

02-15

Finally, the interface routine converts the raw form into the desired form: $H(x) = \frac{5x}{m}$.

EE 4770 Lecture Transparency, Formatted 13:25, 23 December 1997 from lsli02

$$\begin{split} H_{\rm f}(H_{\rm ADC(5\,V,8)}(H_{\rm c}(H_{\rm t}(x)))) &= H(x) \\ H_{\rm f}(\lfloor (x/\,{\rm m})255 \rfloor \bmod 256) &= H(x) \end{split}$$

Define $y = g(x) = \lfloor (x/m)255 \rfloor \mod 256$.

Then $x = g^{-1}(y) \approx y \frac{\mathbf{m}}{255}$ for $x \in [0 \, \mathbf{m}, 1 \, \mathbf{m}]$.

Then

$$\begin{split} H_{\rm f}(g(x)) &= H(x) \\ H_{\rm f}(y) &= H(g^{-1}(y)) \\ &= H(y\frac{\rm m}{255}) \\ &= \frac{5}{\rm m}y\frac{\rm m}{255} \\ &= \frac{y}{51}. \end{split}$$

The code fragment in the RT program is then:

int raw;

- double waterLevel;
- raw=readInterface();
- waterLevel=raw/51.0;

 \dots and we're done!