Operational Amplifiers

These are common components in conditioning circuits.
There are two inputs, v_{+}and v_{i}, two power supplies, $+V_{\mathrm{s}}$ and $-V_{\mathrm{s}}$, and an output, v_{o}.

$v_{o}=\min \left\{+V_{\mathrm{s}}, \max \left\{-V_{\mathrm{s}},\left(v_{+}-v_{-}\right) A\right\}\right\}$, were A is the op-amp gain.
Ignoring saturation, $v_{o}=A\left(v_{+}-v_{-}\right)$.
Ideal Op-Amp Properties
Infinite input impedance.
Infinite gain. $(A=\infty)$
Zero output impedance.

Where to Find Ideal Op-Amps
An electronics textbook.
However, in certain circuits a real op-amp performs almost the same as an ideal op-amp would.

Simplifying Assumptions
Current into inputs is zero.
When used in a negative feedback configuration, $v_{+}=v_{-}$.
Op-Amp Circuits to be Covered
Non-inverting amplifier
Inverting amplifier.
Summing amplifier.

Non-Inverting Amplifier

$$
v_{o}=\frac{R_{\mathrm{A}}+R_{\mathrm{B}}}{R_{\mathrm{A}}} v_{i} .
$$

Non-Inverting Amplifier Example Problem

Design a system with output $v_{o}=H(x)$, where process variable x is water level, $x \in[0 \mathrm{~m}, 1 \mathrm{~m}]$, and $H(x)=10 x \frac{\mathrm{~V}}{\mathrm{~m}}$.
Note: most example problems will not be as complete as the archetypical problem covered earlier.

Solution:
Use same float-and-cable system as in previous example problem.
Use $100 \mathrm{k} \Omega$ three-terminal variable resistor with 1 V voltage source across fixed terminals:

$$
H_{\mathrm{t}}(x)=1 x \frac{\mathrm{~V}}{\mathrm{~m}}
$$

Problem will be solved two ways:
First way, we know what kind of conditioning circuit is needed.
Second way, we have to determine algebraicly the type of conditioning circuit needed.

Second Way: Derive Conditioning-Circuit Function
Pretend we don't know that a simple amplifier is needed.

$$
H(x)=H_{\mathrm{c}}\left(H_{\mathrm{t}}(x)\right)
$$

We need to solve for H_{c}.
Let $y=H_{\mathrm{t}}(x)=1 x \frac{\mathrm{~V}}{\mathrm{~m}}$.
Then $x=H_{\mathrm{t}}^{-1}(y)=1 y \frac{\mathrm{~m}}{\mathrm{~V}}$.
Substituting:

$$
\begin{aligned}
& H\left(1 y \frac{\mathrm{~m}}{\mathrm{~V}}\right)=H_{\mathrm{c}}(y) \\
H_{\mathrm{c}}(y)= & H\left(1 y \frac{\mathrm{~m}}{\mathrm{~V}}\right)=10\left(1 y \frac{\mathrm{~m}}{\mathrm{~V}}\right) \\
= & 10 y
\end{aligned}
$$

Therefore our conditioning circuit needs to multiply y, a voltage, by a constant

A non-inverting amplifier will do just that.
(The remainder of the solution is identical to the first way.)

First Way: Use Non-Inverting Amplifier
Obviously, all that is needed is an amplifier with a gain of 10 . A non-inverting amplifier will do.

Then:

$$
\begin{aligned}
H(x) & =H_{\mathrm{c}}\left(H_{\mathrm{t}}(x)\right)=A\left(1 x \frac{\mathrm{~V}}{\mathrm{~m}}\right) \\
10 x \frac{\mathrm{~V}}{\mathrm{~m}} & =A\left(1 x \frac{\mathrm{~V}}{\mathrm{~m}}\right) \\
A & =10
\end{aligned}
$$

For example, $R_{\mathrm{A}}=10 \mathrm{k} \Omega$ and $R_{\mathrm{B}}=90 \mathrm{k} \Omega$.

Inverting Amplifier

$$
v_{o}=-\frac{R_{\mathrm{B}}}{R_{\mathrm{A}}} v_{\mathrm{A}} .
$$

Conditioning-Circuit Function Derivation
So far: $H(x)=10 x \frac{\mathrm{~V}}{\mathrm{~m}}$ (given) and $H_{\mathrm{t}}(x)=100 x \frac{\mathrm{k} \Omega}{\mathrm{m}}$ (choice of transducer).

Solve for H_{c} in:

$$
H_{\mathrm{c}}\left(H_{\mathrm{t}}(x)\right)=H(x)
$$

Let $y=H_{\mathrm{t}}(x)=100 x \frac{\mathrm{k} \Omega}{\mathrm{m}}$.
Then $x=0.01 y \frac{\mathrm{~m}}{\mathrm{k} \Omega}$.
Substituting:

$$
\begin{aligned}
H_{\mathrm{c}}(y) & =H\left(0.01 y \frac{\mathrm{~m}}{\mathrm{k} \Omega}\right) \\
& =10\left(0.01 y \frac{\mathrm{~m}}{\mathrm{k} \Omega}\right) \frac{\mathrm{V}}{\mathrm{~m}} \\
& =0.1 y \frac{\mathrm{v}}{\mathrm{k} \Omega}
\end{aligned}
$$

For the inverting amplifier used as a resistance-to-voltage converter:
$H_{\mathrm{c}}\left(R_{\mathrm{B}}\right)=A_{2} R_{\mathrm{B}}$.
$R_{\mathrm{B}} \rightarrow y$ and $A_{2} \rightarrow 0.1 \frac{\mathrm{~V}}{\mathrm{k} \Omega}$.
Choose R_{A} and v_{A} so that the following equation is satisfied:

$$
0.1 \frac{\mathrm{~V}}{\mathrm{k} \Omega}=-\frac{v_{\mathrm{A}}}{R_{\mathrm{A}}}
$$

For example, $R_{\mathrm{A}}=60 \mathrm{k} \Omega$ and $v_{\mathrm{A}}=-6 \mathrm{~V}$.

03-15

Solution Plan:

Compute position of piston, y, in terms of pressure, x.
Measure position of piston with variable resistor.
Find conversion circuit to produce $H(x)$.

Transducer(s)

Two transducers are being used:

- Pressure-to-position. (The piston.) Use notation $y=H_{\mathrm{t1}}(x)$.
- Position-to-resistance. Use notation $z=H_{\mathrm{t} 2}(y)$.

Pressure to Position
Recall: $P S=10^{5} \mathrm{kPacm}^{3}$.
Here $P \rightarrow x$
\ldots and $S \rightarrow y 100 \mathrm{~cm}^{2}$.
So: $x y 100 \mathrm{~cm}^{2}=10^{5} \mathrm{kPacm}^{3}$.
Or: $y=\frac{10^{5} \mathrm{kPacm}^{3}}{x 100 \mathrm{~cm}^{2}}=\frac{10^{3} \mathrm{kPacm}}{x}=H_{\mathrm{t} 1}(x)$.

Position to Resistance

Use a $5 \mathrm{k} \Omega$ variable resistor.
Connect it such that $H_{\mathrm{t} 2}(y)=\frac{y}{10 \mathrm{~cm}} 5 \mathrm{k} \Omega$.

Another Inverting Amplifier Sample Problem
Design a system with output $v_{o}=H(x)$, where process variable x is pressure in a sealed cylinder, $x \in[100 \mathrm{kPa}, 1000 \mathrm{kPa}]$, and $H(x)=\frac{x}{100 \mathrm{kPa}} \mathrm{V}$. The cylinder has an area of $100 \mathrm{~cm}^{2}$. The piston can reach a maximum height of 10 cm at which point the pressure will be 100 kPa . The cylinder contents is held at a constant temperature.

Plan: Deduce pressure by measuring the position of the piston.
Ideal gas law: $P S=n \Re T$,
where P is the pressure, S is the volume, n is the number of particles, \Re is the universal gas constant, and T is the temperature.

Since the cylinder is sealed, n is constant.
Since a constant temperature is maintained, T is constant
Then: $P S=n \Re T=100 \mathrm{kPa} 10 \mathrm{~cm} 100 \mathrm{~cm}^{2}=10^{5} \mathrm{kPacm}^{3}$.

Conversion Circuit Function
Desired output: $H(x)=\frac{x}{100 \mathrm{kPa}} \mathrm{V}$.

$$
H_{\mathrm{c}}\left(H_{\mathrm{t} 2}\left(H_{\mathrm{t} 1}(x)\right)\right)=H(x)
$$

Let $z=H_{\mathrm{t} 2}\left(H_{\mathrm{t} 1}(x)\right)=5 \times 10^{5} \frac{\mathrm{kPa}}{x} \Omega$.
Then: $x=5 \times 10^{5} \frac{\mathrm{kPa}}{z} \Omega$.
Substituting:

$$
\begin{aligned}
H_{\mathrm{c}}\left(H_{\mathrm{t} 2}\left(H_{\mathrm{t} 1}(x)\right)\right) & =H(x) \\
H_{\mathrm{c}}(z) & =H\left(5 \times 10^{5} \frac{\mathrm{kPa}}{z} \Omega\right) \\
& =\frac{5}{z} \mathrm{k} \Omega \mathrm{~V}
\end{aligned}
$$

Conversion Circuit Choice
Use inverting amplifier as inverted-resistance-to-voltage converter.
$H_{\mathrm{c}}\left(R_{\mathrm{A}}\right)=\frac{A_{3}}{R_{\mathrm{A}}}$, where $A_{3}=-R_{\mathrm{B}} v_{\mathrm{A}}$.
$R_{\mathrm{A}} \rightarrow z$ and $A_{3} \rightarrow 5 \mathrm{k} \Omega \mathrm{V}$.
Choose R_{B} and v_{A} so that $5 \mathrm{k} \Omega \mathrm{V}=-R_{\mathrm{B}} v_{\mathrm{A}}$.
For example, $R_{\mathrm{B}}=50 \mathrm{k} \Omega$ and $v_{\mathrm{A}}=-10 \mathrm{~V}$

Proceeding in the usual manner:
Let $y=H_{\mathrm{t}}(x)=e_{1} \frac{x}{\mathrm{~m}} 5 \mathrm{k} \Omega+e_{2}$.
Then $x=\frac{\mathrm{m}}{e_{1} 5 \mathrm{k} \Omega}\left(y-e_{2}\right)$.

$$
\begin{aligned}
H_{\mathrm{c}}\left(H_{\mathrm{t}}(x)\right) & =H(x) \\
H_{\mathrm{c}}(y) & =10 \frac{\mathrm{~V}}{\mathrm{~m}} \frac{\mathrm{~m}}{e_{1} 5 \mathrm{k} \Omega}\left(y-e_{2}\right) \\
& =\frac{2 \mathrm{~V}}{e_{1} \mathrm{k} \Omega}\left(y-e_{2}\right)
\end{aligned}
$$

Looks like a gain/offset circuit

$$
A_{5} \rightarrow \frac{2 \mathrm{~V}}{e_{1} \mathrm{k} \Omega} \text { and } O_{5} \rightarrow e_{2}
$$

Choose component values so that following are simultaneously satisfied:
$\frac{2 \mathrm{~V}}{e_{1} \mathrm{k} \Omega}=\frac{R_{\mathrm{B}} v_{\mathrm{B}}}{R_{\mathrm{D}} R_{\mathrm{A}}}$ and $e_{2}=\frac{v_{\mathrm{C}} R_{\mathrm{D}} R_{\mathrm{A}}}{v_{\mathrm{B}} R_{\mathrm{C}}}$
Choose reasonable values for $R_{\mathrm{A}}, R_{\mathrm{D}}, v_{\mathrm{B}}$, and v_{C} $v_{\mathrm{B}}=5 \mathrm{~V}$ and $R_{\mathrm{D}}=5 \mathrm{k} \Omega$.

Possible reasons: a 5 V supply is available.
Current through transducer $\left(R_{\mathrm{E}}\right)$ will be 1 mA , not too large or small for many cases

$$
R_{\mathrm{A}}=10 \mathrm{k} \Omega \text { and } v_{\mathrm{C}}=5 \mathrm{~V} .
$$

Solving equations then yields:

$$
\begin{aligned}
& R_{\mathrm{B}}=22.0 \mathrm{k} \Omega . \\
& R_{\mathrm{C}}=1.35 \mathrm{M} \Omega .
\end{aligned}
$$

