05-1

05-1

Function: Determine if one voltage is larger than another.

Types of comparators:

- Single-Threshold Op-Amp. Output is a voltage.
- Digital Comparator. Output is a logic level.
- Hysteresis Op-Amp. Output is a voltage, uses two thresholds.

Comparators

Applications

- Determine when a voltage exceeds a constant value.
- Determine when one voltage exceeds another.
- Et cetera.
- The comparator output might interrupt a computer or perform other functions.

Single-Threshold Op-Amp Comparator

Here, v_+ and v_- are inputs.

Transfer function:

 $H_{\rm c}(v_+,v_-) = \begin{cases} V_{\rm s}, & {\rm if} \; v_+ > v_-; \\ -V_{\rm s}, & {\rm if} \; v_+ \le v_-. \end{cases}$

Voltage might be useful for controlling other part of circuit.

But it's not in a convenient form for driving logic circuits.

05-2

05-2

05-4

05-3

05-1

05-3

05-1

Single Threshold Example Problem

Design a system with output $v_o = H(x)$ where process variable x is water level, $x \in [0 \text{ m}, 1 \text{ m}]$, and H(x) = 5 V if x > 30 cm and H(x) = 0 otherwise.

EE 4770 Lecture Transparency, Formatted 13:25, 23 December 1997 from Islio5.

Solution:

Use a three-terminal variable resistor to measure water level, as usual.

(Suppose it will later be necessary to measure the exact water level, so that a single switch cannot be used.)

Use an op-amp as a comparator.

05-4

Digital Comparator

EE 4770 Lecture Transparency, Formatted 13:25, 23 December 1997 from Islio5.

Like op-amp comparator except that output is a logical quantity.

 $H_{\rm c}(v_+,v_-) = \begin{cases} {\bf 1}, & {\rm if} \; v_+ > v_-; \\ {\bf 0}, & {\rm if} \; v_+ \le v_-. \end{cases}$

This is useful for driving logic circuits.

05-3

05-5	05-5	05-6	05-6
Digital Comparator Example Problem		Hysteresis Op-Amp Threshold Detector	
Design a system with output $v = H(x_1, x_2)$ where process variables x_1 and x_2 are water levels in two different tanks, $x_1, x_2 \in [0 \text{ m}, 1 \text{ m}]$, and $H(x_1, x_2) = 1$ if $(x_1 > 30 \text{ cm} \text{ and } x_2 > 30 \text{ cm})$ or $H(x_1, x_2) = 0$ otherwise.		Problem with previous comparators: Consider a noisy input.	
Solution:			
Use a three-terminal variable resistors to measure water level in each tank, as usual.			
(Suppose it will later be necessary to measure the exact water level, so that switches cannot be used.)			
Use digital comparators and an and gate.			
Note that an op-amp would not be capable of driving logic gates.		Output of comparator will change many times. Sometimes this cannot be tolerated. With hysteresis circuit there are two thresholds, v_{low} and v_{high} :	
		 Output will be in state below or above. Below-to-above transition occurs at threshold v_{high}. Above-to-below transition occurs at threshold v_{iew}. 	
		Note that output change is smoother.	
05-5 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from Isli05.	05-5	05-6 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from Isli05.	05-6
05-7	05-7	05-8	05-8
Hysteresis Op-Amp Threshold Detector		Hysteresis Op-Amp Threshold Detector	
$R_{A} \xrightarrow{V_{+}} v_{r}$		$R_{A} \xrightarrow{V_{r}} v_{o}$	
Circuit Analysis		Circuit Analysis	
Given: v_{low} and v_{hich} .		Given: v_{low} and v_{high} .	
Find: R_A , R_B , v_r and v .		Find: R_A , R_B , v_r and v .	
Analysis Plan		Observations	
• Write equation for $v_{\rm in} = v_{\rm low}$ in above state.		In above state: Output is v_r and threshold is v_{low} .	
• Write equation for $v_{\rm in} = v_{\rm high}$ in below state.		In below state: Output is $-v_r$ and threshold is v_{high} .	
• Combine and solve for unknowns.		When $v_{in} = v_{low}$ in above state, $v_+ = v$.	
		Similarly, when $v_{in} = v_{high}$ in below state, $v_+ = v$.	
		$\frac{R_{\rm A}}{R_{\rm B}} = \frac{v_{\rm high} - v_{\rm low}}{2v_r} \qquad v = \frac{v_{\rm high} + v_{\rm low}}{2\left(1 + \frac{R_{\rm A}}{R_{\rm B}}\right)}$	
05-7 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from Isli05.	05-7	05-8 EE 4770 Lecture Transparency. Formatted 13:25, 23 December 1997 from Isli05.	05-8

05-9