11-1	11-1	11-2	11-2
Flow		Some Major Types of Sensors	
Measures of Fluid Flow		• Rotation. Fluid forces an object placed in flow to rotate. Speed of rotation is measured	
• Flow velocity. Speed of material flowing past a plane.		• Obstruction. Fluid flow is partially obstructed. Pressure is	
 Volumetric flow. Volume of material passing a plane per u time. 	ınit	measured on both sides of obstruction, flow rate deduced.	
• Mass flow. Mass of material passing a plane per unit time.		• <i>Heat dissipation</i> . A heating element is placed in the flow. Flow rate deduced by amount of heat removed.	
If fluid is incompressible then flow velocity, volumetric, and m flow are proportional.	lass	• <i>Head</i> . Measure fluid level flowing into a drop.	
Types of Flowing Fluids to be Measured			
• Liquid in closed conduit. (<i>E.g.</i> , water in a pipe.)			
• Liquid in an open conduit. (<i>E.g.</i> , water in a canal.)			
• Gas in an closed conduit.			
\bullet Slurry (solids suspended in liquids) in a closed conduit.			
Different transducers may be required for each situation.			
11-1 EE 4770 Lecture Transparency. Formatted 13:26, 23 December 1997 from Isli11.	11-1	11-2 EE 4770 Lecture Transparency. Formatted 13:26, 23 December 1997 from Isli11.	11-2
11-3	11-3	11-4	11-4
11-3 Rotation Sensors	11-3	11-4 Model Function	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be o cussed, turbine and paddle wheel.	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a condi- tioning circuit, and a frequency counter.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be of cussed, turbine and paddle wheel. Turbine Type	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.	11-4
 11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. 	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow. Flow causes wheel to turn.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer Flow Flow Flow Flow Flow Flow Flow Flow	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow. Flow causes wheel to turn. Same model function as turbine flow meter.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer Flow Flow Flow Flow Flow Flow Flow Flow	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
11-3 Rotation Sensors Force of flow causes some object to rotate. Two types will be a cussed, turbine and paddle wheel. Turbine Type Used to measure volumetric flow in a closed conduit. Magnetic Reluctance Transducer Image: Comparison of the sensor of the sen	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow. Flow causes wheel to turn. Same model function as turbine flow meter.	11-4
<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
<section-header><section-header></section-header></section-header>	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
<section-header><section-header><table-container></table-container></section-header></section-header>	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
<section-header></section-header>	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
<section-header><section-header><table-container></table-container></section-header></section-header>	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
<section-header><section-header>11-3 For a construction of the constructi</section-header></section-header>	11-3 dis-	11-4Model FunctionThis includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume.Paddle WheelUsed to measure volumetric flow in an open conduit.Consists of a wheel partially immersed in the flow.Flow causes wheel to turn.Same model function as turbine flow meter.	11-4
<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = k x$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow. Flow causes wheel to turn. Same model function as turbine flow meter.	11-4
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	11-3 dis-	11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. $H_{t1}(x) = kx$, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow. Flow causes wheel to turn. Same model function as turbine flow meter.	11-4
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	11-3 dis-	 11-4 Model Function This includes the turbine, the magnetic reluctance sensor, a conditioning circuit, and a frequency counter. H₁₁(x) = kx, where k is a constant called the k factor, having units of one over volume. Paddle Wheel Used to measure volumetric flow in an open conduit. Consists of a wheel partially immersed in the flow. Flow causes wheel to turn. Same model function as turbine flow meter. 	11-4
<page-header><page-header><text><text><section-header><text><image/><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></text></text></page-header></page-header>	11-3 dis- des.	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	11-4

11-5 11	11-5 11-6 11-0	6
Paddle Wheel/Speed Measurement Example	The FP-2502 Flow Sensor	
	Output pulse minimum 2 V	
Design a system to convert process variable $x \in [0, 80 \frac{\text{m}}{\text{s}}]$, flow in a pipe, into a floating-point number $H(x)$ to be written into vari-	For each ml flow there are 8.5 pulses	
able paddleFlow, where $H(x) = x \frac{s}{ml}$. The value must have a	For each nin now there are 6.5 puises.	
precision of $\pm 0.1 \frac{\text{m}}{\text{s}}$. Use an FP-2502 paddle-wheel flow sensor.	Measurable range, $\begin{bmatrix} 50 - \frac{111}{\min}, 6000 - \frac{111}{\min} \end{bmatrix}$.	
Solution Overview	Cost, \$530.	
Flow + Counter	Design Decisions	
Sensor	Threshold for digital comparator	
	Number of hits in counter and register	
	Amount of time between samplings of counter	
Interface Register	Interface routine	
Data Out Olock	Digital Comparator Threshold	
	Sot porative input to slightly less than 2 V	
r = readInterface();	Set negative input to signify less than 2 V.	
Flow sensor generates a voltage pulse train.		
Digital comparator converts to logic level.		
Counter counts pulses.		
At regular intervals count transferred to register, and counter reset.		
At irregular intervals interface routine reads register and completes		
conditioning.		
11-5 EE 4770 Lecture Transparency. Formatted 13:26, 23 December 1997 from Isli11. 11	11-5 11-6 EE 4770 Lecture Transparency. Formatted 13:26, 23 December 1997 from Isli11. 11-6	6
11-7 11	11-7 11-8 11-4	8
Counter Contents	To complete the solution choose t_c and the number of bits in the	
Let $H_{ctr}(x, t)$ give the counter value t time after being reset, where x is the flow rate.	counter and register. Precision goal is $\pm 0.1 \frac{\text{ml}}{\text{s}}$.	
Then, $H_{\rm ctr}(x,t) = x k t$, where $k = \frac{8.5}{2}$. (This assumes that x is	Smallest change in r is ± 1 .	
constant while the counter is counting.)	Therefore constraint $H_{\rm f}(r) - H_{\rm f}(r-1) \leq 0.1$ must hold.	
Let t_c denote the amount of time that the counter counts before its contents are transferred to the register.	Applying $H_{\rm f}$, $\frac{1}{8.5} \frac{1}{t_c} s(r - (r - 1)) \le 0.1$.	
Let $H_r(x)$ give the value clocked into the register.	As a safety margin, solve $\frac{1}{8.5} \frac{1}{t_c}$ s = 0.025.	
Then $r = H_{\rm r}(x) = H_{\rm ctr}(x, t_c) = x \frac{0.5}{\rm ml} t_c.$	$t_c = 4.706 \mathrm{s}.$	
This value will be read by the interface routine.	Then, $H_{\rm r}(80\frac{\rm ml}{\rm s}) = 3200$. Therefore a 12-bit counter is needed.	
Solving for x yields $x = r \frac{\mathrm{IIII}}{8.5} \frac{1}{t_c}$.	Interface routine code:	
To obtain $H_{\rm f}$:	r = readificeriace();	
$H_{\rm f}(H_{\rm r}(x)) = H(x)$	padateriow = r * 0.025;	
$H_{\rm f}(r) = H(r\frac{{\rm III}}{8.5}\frac{1}{t_c})$		
$=\frac{\mathrm{s}}{\mathrm{ml}}r\frac{\mathrm{ml}}{\mathrm{85}t}\frac{1}{t}$		
$=r\frac{1}{2}r\frac{1}{2}s$		
$\delta. \Im I_c$		

11-11

11-12

EE 4770 Lecture Transparency. Formatted 13:26, 23 December 1997 from Isli11.

Interface Routine

Output of ADC:

$$\begin{split} r &= H_{\rm ADC(10\,V,10)}(H_{\rm c}(H_{\rm p}(H_{\rm t1}(x)))) \\ &= \frac{(2^{10}-1)}{10\,{\rm V}}g\frac{100\,{\rm mV}}{5\,{\rm bar}}\frac{\delta}{2}\left(\frac{x}{C_d}\right)^2 \left(\frac{1}{A_1^2}-\frac{1}{A_2^2}\right) \end{split}$$

Solving for x yields

$$\begin{split} x &= \sqrt{\frac{10\,\mathrm{V}}{2^{10}-1}} \frac{1}{g} \frac{5\,\mathrm{bar}}{100\,\mathrm{mV}} \frac{2}{\delta} C_d^2 \left(\frac{1}{A_1^2} - \frac{1}{A_2^2}\right)^{-1} r \\ &= \sqrt{2.718 \times 10^{-7} \frac{\mathrm{m}^6}{\mathrm{s}^2} r} \end{split}$$

Need to find $H_{\rm f}$ such that:

$$H_{\rm f}(H_{\rm ADC(10\,V,10)}(H_{\rm c}(H_{\rm p}(H_{\rm t1}(x))))) = H(x) = x \frac{\min}{1}$$

Substituting,

$$\begin{split} H_{\rm f}(r) &= H\left(\sqrt{2.718 \times 10^{-7} \frac{{\rm m}^6}{{\rm s}^2} r}\right) = \sqrt{2.718 \times 10^{-7} \frac{{\rm m}^6}{{\rm s}^2} r} \frac{{\rm min}}{{\rm l}} \\ &= 0.0005212 \frac{{\rm m}^3}{{\rm s}} \frac{{\rm min}}{{\rm l}} \sqrt{r} = 31.27 \sqrt{r} \end{split}$$

Interface routine:

r = readInterface();

EE 4770 Lecture Transparency, Formatted 13:26, 23 December 1997 from Isli11.

11-19

11-19

11-17

Two-Temperature Transducer Flow Meter

Used to measure mass flow in a closed or open conduit.

Construction:

Two temperature transducers placed in fluid.

One is exposed to flow.

The other is exposed to stationary fluid.

Transducers are connected in a bridge configuration.

No model function or circuit will be given.

Other Flow Transducers

Used to measure mass flow in a closed or open conduit.

Model Function

For a rectangular cut, $H_{t1}(x) = k x^{2/3}$.

For a V-notch cut, $H_{t1}(x) = k x^{2/5}$.

11-19

11-18

11-18

Hot-Wire Anemometer

11-21 1	11-21
Slurry Flow Measurement Methods	
Flow contains a suspension of particles.	
For example, coal mixed with water,	
water with air bubbles, etc.	
• Sonar. Measures flow velocity.	
Sound injected nearly parallel to the direction of flow.	
Microphones pick up reflected sound.	
Speed determined by Doppler shift.	
• Cross correlation. Measures flow velocity.	
Some property is measured at two points in the flow, for example electrical resistance.	
Let the two points be separated by a distance d .	
Let $p_1(t)$ be the property measured at point 1 and time t.	
Let $p_2(t)$ be the property measured at point 2 and time t.	
The interface routine finds a Δt such that $p_1(t) \approx p_2(t + \Delta t)$ for some range $t \in [t_1, t_2]$.	
The flow velocity is then $d/\Delta t$.	

EE 4770 Lecture Transparency. Formatted 13:26, 23 December 1997 from Isli11.

11-21