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Operating Systems

Definition: An operating system is the software that manages re-
sources in a computer.

Resources

A resource is (usually) hardware that needs to be accessed.

There are rules for accessing resources . . .
. . . rules enforced by the OS.

Rules might . . .
. . . restrict access to sensitive resources . . .
. . . or control access to finite resources.

Typical Resources

• Terminal I/O.

• Filesystem. (Data stored on disk).

• Main memory. (A.k.a. RAM or core).

• Sensors and actuators. (In a RTS, for example.)

• Network services. (To connect to other computers.)

• Threads.

• CPU time.

OS description here is for a typical multithreaded of Unix . . .
. . . other modern operating systems work in a similar fashion.
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Resources Managed on Behalf Of Tasks.

Task requests the resource.

OS determines if task is allowed the resource.

OS determines if task can be given the resource.

E.g., if there is enough available.

If both are true, OS grants the task’s request.

To service such requests, the OS must keep track of how much of each
resource is available and under what conditions requests can be
granted.
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Resource Allocation and Usage Example

Consider the following code fragment.

/* Allocate 1000 bytes of storage. */
1: basePointer = malloc( 1000 ) ;

The code fragment above is part of some program which is compiled
and run on some system.

The program, from when it starts running until it finishes running, is
referred to as a task.

In line 1 the task requests address space (a resource).

The task asks the OS for 1000 bytes of main-memory address
space using the C malloc library function.

The OS checks if the task is allowed 1000 more bytes of address
space.

The OS also checks if 1000 bytes of address space is available.

If both checks are positive, the space is allocated. (If not, malloc
returns a null pointer.)
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/* Write a 3 into element x. */
2: basePointer[x] = 3;

/* Open a file for output. */
3: mf = fopen( "myFile.data" , "w" );

In line 2 task writes to main memory.

The task will attempt to write to memory address given by base-
Pointer+x.

The write makes use of the address-space resource. The system
must verify that this resource has been allocated.

If the task has write permission to this address, then the 3 is
written.

Otherwise, the OS will terminate execution of the program be-
fore the 3 is written.

In line 3 task opens a file for writing, using the filesystem resource.

The OS checks if the task has write permission on the file.

The OS checks if opening the file for writing could be accom-
plished within the task’s resource limits.

If both checks are positive, the OS performs all the actions nec-
essary to open the file.
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Description of Major Types of Resources

Terminal I/O.

Provided by the following hardware:

A communication port to which a terminal is connected.

A video display and keyboard connected to the computer.

The OS might have to reserve these devices for the task.

The OS might refuse access to a terminal if some other task had
reserved it.

The OS, in most cases, would actually read or write data to these
devices.

Sensors and actuators. (In RTS.)

These devices are connected to the computer through an interface.

The OS may reserve access to these devices for use by one task.

The OS may also perform the actual reading and writing of the de-
vices.
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Filesystem (data stored on disk in an organized form).

Actual hardware usually disk drives.

Disks “know” about tracks and cylinders.

OS organizes (as a librarian) disk into directories and files.

Files are given names, owners, access permissions, etc.

When a task issues a command to read a file the OS:

• finds the disk the file is located on,

• checks access permissions,

• finds the track and cylinder of the needed part of the file,

• sends commands to the disk to retrieve data,

• . . .when the data is available. . .

• reads the data sent by the disk drive, formats it for the task.

This organization makes programmers’ lives simpler . . .
/ld and keeps the data relatively secure.

(OSs which do not control access to the filesystem or devices are ex-
tremely vulnerable to viruses and worms.)
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Main memory (A.k.a. RAM or core).

Whenever the CPU issues an instruction fetch, or does a load or store,
a memory address is issued.

The memory address refers to a part of an address space, which is a
resource allocated to the task.

Memory is managed by the OS and by special memory-management
hardware.

CPU time.

The CPU time resource is time that a task runs on the CPU.

A system can have many tasks, the OS must divide the time between
them.

The scheduler determines what fraction of CPU time each task gets.

For a typical computer, good CPU time management will result in
good performance. (The computer will appear to react quickly.)

For a RTS, CPU time management is critical for correct performance.
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Network services.

A computer connects to the rest of cyberspace through a network
interface.

For outgoing data, the OS would format the data into a form suitable
for the network interface.

The data would be transfered to the network interface, and then enter
the network.

Upon arrival of incoming data, the network interface will alert the
computer.

The OS will read the data from the interface and take the appropriate
action.
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OS Resource-Management Functions

To manage resources, the OS must provide the following:

• System calls by which tasks make resource requests.

Malloc and printf make use of system calls, but are not them-
selves system calls.

• Dæmon tasks and other code needed to manage resources and
used for other functions.

This includes tasks that prompt users to log in and dæmons
which manage printers and other computer resources.

• Shells, programs which provide an interface between the OS and
the user.

• Utility programs, so that the system operator and users can
query and change the information the OS uses to manage re-
sources.

This includes programs that display a directory listing, increase
a user’s disk quota, and alter the priorities used by the sched-
uler.
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System Calls

A user program uses system calls to make requests of the OS.

A system call, in many operating systems, works something like a
subroutine call to the OS.

It is used by library writers and sophisticated user programmers.

(Less-adventurous programmers will call library functions, the library
function makes the system call.)

System calls provide a “clean” interface to the operating system:

They have a logical syntax (in a well-designed system).

The syntax of the call is not likely to change even if the imple-
mentation of the resource changes. (For example, in newer
versions of the computer.)

Typical uses for system calls:

Write a character to a terminal.

Allocate address space.

Spawn a new task.

File I/O.

End execution of the task.
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Dæmon Tasks

The purpose of a dæmon task is to manage some hardware.

A dæmon is a task which waits for certain events to occur in the
hardware (or elsewhere).

When the events occur, the dæmon will be notified and will take the
appropriate action.

A well-known example is the print dæmon.

The print dæmon passes data to a printer.

Since printers have finite storage and usually print more slowly than
they can accept data, the dæmon cannot transfer all data to be
printed at one time.

Instead, the dæmon transfers data in small blocks.

After sending a block to the printer, the dæmon will relinquish control.

When the printer is ready for more data, it will interrupt the system,
giving control back to the dæmon.

If there is more data, the dæmon will transfer another block.

Systems have many dæmons lurking in the background.

In addition to printing, dæmons also manage network communication,
and many other services.
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Shells and Utilities

A shell is a program that an OS runs to communicate with the user.

The user first encounters the shell after logging in.

The shell prompts the user for input.

Correct input is a command to the shell.

The shell performs the command. Typical commands include:

• Running a task.

• Displaying a directory listing.

• Changing directories.

• Logging out.

After the command completes shell will again prompt for input . . .
. . . unless the command killed the shell’s task.

Common Shells

command.com, the shell that comes with MS–DOS1.

sh, called the Bourne shell. Used in Unix systems.

csh, called the C shell. Also used in Unix systems.

1 (In the PC world, “shell” is sometimes used only for shells with a menu-driven or graphical interface. The
broader definition will be used here.)
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Utilities

These programs allow users and operators to change various settings
in the operating system and to perform other actions.

Utilities include commands to change file-protection status, create di-
rectories, and print files.

The line between OS utility and a regular program is fuzzy.

For example, is a text editor that comes with an OS an OS utility or
a bundled program?

Such questions can be ignored for this course.
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Tasks, Programs, Processes, and Executables

A program is a collection of statements, instructions, etc. intended
to be run as a unit.

“Program” can refer to several things . . .
. . . it’s important to understand the distinctions:

• A program is in the form of source code . . .
. . . when in a human-readable language.

Programmers write source code.

E.g., source code might be in file hello.c2

• A program is in the form of object code . . .
. . . when it consists of machine instructions.

Object code3 is not a complete program.

• A program is in executable form when . . .
. . . it contains all machine language instructions needed to run4.

E.g., Unix names executables a.out by default5.

• A task (also called a process) is an executable . . .
. . . which the OS has loaded . . .
. . . and is, has, or will be running.

Tasks are assigned process IDs.

2 The last few letters of file names of files containing source code usually indicate the type of source code. For
example, the c in hello.c.

3 The last two letters of file names of files containing object code are usually .o. For example, hello.o.
4 Executables are assembled by a linker from object code, libraries, start and stop code, etc.
5 Most programmers use the program name, rather than a.out, for the executable name, for example, hello.
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Example: consider “Hello, world!” used to introduce C.

Source Code (hello.c):

#include <stdio.h>

int main(argv,argc)
{
printf("Hello, world!\n");
return 0;
}

With the following command . . .

[omega] % gcc hello.c -c

. . . file hello.o is generated6 which contains the object code.

The command . . .

[omega] % gcc -o hello hello.o

. . . links7 the object code with libraries and other code . . .

. . . to form the executable, hello.

6 gcc is the name of a compiler driver program. The compiler driver calls the preprocessor and then the
compiler itself.

7 Here the compiler driver calls the linker.
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The command below creates a task using the executable, hello.

[omega] % hello

Hello, world!

Source, object, and executable files will remain in the filesystem . . .
. . . until deleted.

In contrast, task only existed for a few milliseconds . . .
. . . starting when hello was typed at the prompt . . .
. . . and ending moments later.

Another task is created . . .
. . . whenever hello is typed.

(It’s a distinct task though it does exactly the same thing.)
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Range of Tasks

The following are run as tasks:

• Programs written for homework assignments.

• Application programs, such as accounting and payroll software.

• “Productivity” software, such as word processors and spread-
sheets.

• Software development tools, such as compilers and linkers.

• Dæmon programs, such as the print dæmon.

• Shells.

• External shell commands.

The following are not run as tasks on conventional OSs:

(Instead they run something like a subroutine within another
task.)

• System calls.

• Interrupt handlers. (These will be covered later.)
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A Task’s Resource Needs

A task always needs the following resources:

• Address space.
The address space has a copy of the executable and data needed
by the executable.

• A thread.
The part of the task that actually runs.

If a task were a business, then a thread would be an employee.

• CPU time.
(To run the executable.)

Most tasks also need the following resources:

• A terminal to communicate with the user.

• Access to a filesystem to read and write data.
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Tasks and Threads

A thread is the part of the task that executes instructions.

Each task has one or more threads.

A context . . .
. . . is the info. that must be saved when a thread is stopped . . .
. . . and restored when the thread is re-started.

A context switch . . .
. . . is the process of removing one thread’s context from the CPU . . .
. . . and replacing it with another.

Context information usually includes . . .
. . . the contents of CPU registers . . .
. . . and any other registers used to control the processor and memory-

management hardware.

Context information does not include . . .
. . . memory contents8, disk contents, etc.

8 (The memory-management hardware can hold and distinguish the address spaces for multiple tasks, therefore
there is no need to remove a task’s address space from memory when it temporarily stops running. A
conventional CPU can only hold one set of register values, so these have to be saved.)
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Threads

In multithreaded OSs a single task can have one or more contexts.

In a conventional OS each task has exactly one context.

In multithreaded OSs contexts are referred to as threads of execution
or simply threads.

All threads in a task share the same address space and are usually
sharing large amounts of data.

Context switching between two threads in the same task may take
much less time than context switching between two threads in
different tasks.

After a context switch in a multithreaded system a new thread will
be running, and perhaps a new task.

In multithreaded systems, the OS allocates threads to tasks.

In other OSs each task is automatically given its one-and-only thread.
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Context Switching

A single CPU can run only one thread at a time.

The OS switches execution from one thread to another, giving the
appearance that many are simultaneously running.

The following occurs during a context switch:

• The context is saved in a data structure that the OS has reserved
for the thread.

These include the general-purpose registers, the stack pointer,
and especially the program counter.

• After saving one context, the OS will load another context.

• If the new context is in a different thread then the memory-
management hardware must be switched from one address space
to another.

This is done by writing the memory-management hardware’s
process-id register.

• The last step is to load the program counter, that is, jump to an
instruction in the new thread.

When the context switch is complete, a different task or thread
will be running.

Because of the bookkeeping involved (not just saving the registers)
context switching takes a relatively long amount of time.
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The CPU-Time Resource

A task is getting CPU time, running, whenever the CPU has one of
its contexts.

The task will continue to run until:

it requests a resource from the OS,

it attempts to do something it is not allowed to do,

some other event needs to be attended to,

it has exhausted its present CPU time resource allocation.

At this point the OS will take control, perhaps restarting the task
at a later time.
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The Life of a Task

Here are the steps in the life of a typical task.

• “Pre-natal” step. An executable program is waiting in a file.

• “Birth.” A currently running task starts the new task.

In Unix, this is done in two steps:

First the currently running task makes a fork system call. The
OS will make a duplicate of the running task. The two
resulting tasks are identical, except for their process IDs.

The new task makes a execve system call, this loads and starts
the new executable.

• The new task will run for some time.

• Suppose the task needs to wait for user input.

It will make a system call, requesting input.

The user may not provide input for some time, so the OS will
do a context switch to another task.

After the user enters some input, the OS will do a context switch
back to the task.

• The task computes some more. Suppose it exceeds its CPU
time allocation.

The CPU will preempt the task, context switching to a new
task.

Later the task will be resumed.
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The Life of a Task, Continued

• The task is resumed, continuing its work.

...

• Finally, the task finishes: it makes a final system call, exit.

The OS cleans up any “loose ends” the task might have left, for
example closing files.

The OS will then release the task’s resources for use by other
tasks.
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The Kernel

The kernel, the core of an OS, is executable code kept in a special
area of memory which is accessible only through special CPU
instructions.

When a task makes a system call it is executing the special CPU
instruction.

The special instruction is usually called a trap or a software interrupt.

As a result of making a system call, the CPU switches from user
mode to privileged mode.

A second result of a system call is a jump made into the special area
of memory, where the kernel starts executing.

In many systems the virtual address space is divided into two halves,
one reserved for tasks, the other for the kernel.

Most of the system half of every task’s address space would be
mapped to the same physical address, so only one copy of the
kernel code would be needed.
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The Kernel vs. Tasks

An OS is able to enforce its control over resources because of special
features of the hardware.

For example, the memory-management hardware will halt any task
which attempts to access unallocated memory.

So why can’t the task tell the memory hardware that it does have
access to that memory?

If the OS can do it, couldn’t the task? Isn’t the OS a program, just
like the task?

No, it’s not.
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CPU Modes

The OS is a program made up of instructions, to be sure.

But some of those instructions are privileged.

Modern CPUs have a special mode, called privileged (a.k.a. system or
supervisor) mode.

Privileged instructions can only be executed in privileged mode.

Privileged instructions are used to set the memory-management hard-
ware and to change other sensitive parts of the system.

Privileged mode is turned off by setting a bit in the CPU’s processor
status word (PSW).

While the kernel is running, privileged mode is on.

Before the kernel returns control to a task, privileged mode is turned
off.

As one might expect, a task cannot change the PSW, so a task can-
not change the CPU to privileged mode and loot the system
resources.
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How the Kernel is Entered

Reasons the kernel gets entered, and what the kernel does:

• A task makes a system call.

The kernel performs the requested action.

• A task attempts to execute an illegal instruction or attempts
an illegal memory access.

The kernel may kill the task, allow the task to continue, or call
a special handler routine provided by the task.

The type of action depends upon what the task attempted.

• An external device signaled the computer for attention, by re-
questing an interrupt.

The kernel will call a special handler routine to attend to the
external device.

This will be covered in great detail, later.

• A timer (like an alarm clock) has expired, interrupting the CPU.

The action taken by the kernel depends upon why the timer
was set.

The timer might have been set:

because an external device would need attention (but could not
generate an interrupt),

to update time-related data structures, such as the system clock,

to preempt the running task because its CPU-time allocation is
used up.
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Example of CPU Activity

Consider a system in which two programs are running.

One is searching a file for the letter X:

/* Program 1 (Will run as task 5371.) */
do { c = fgetc( fileStream ); } while ( c != ’X’ );

The other is computing π.

/* Program 2 (Will run as task 8462.) */
double sum = 0, i = 1, pi;
while( i < 10000000000 ){ sum+=1/i; i+=2; sum-=1/i; i+=2; }
pi = sum * 4.0;

The CPU might be doing the following:

User Mode, Task 5371, Prog. 1: Execute code user wrote. (do).

User Mode, Task 5371, The fgetc library function.

Priv. Mode, Kernel, The read system call.

Priv. Mode, Kernel, Context switch to Task 8462.

User Mode, Task 8462, The while loop, written by the user.

Priv. Mode, Kernel, Disk interrupted with requested data. OS writes
data in buffer. Interrupted task resumed.

User Mode, Task 8462, The while loop, written by the user.

Priv. Mode, Kernel, (Entered because of timer.)

Priv. Mode, Kernel, Scheduler, choose new task. Context switch to
Task 5371.

User Mode, Task 5371, The fgetc library function.

User Mode, Task 5371, While condition comparison.
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