Problem 1: Design a circuit to convert temperature, $x \in[200 \mathrm{~K}, 220 \mathrm{~K}]$, to a voltage $H(x)=(x-200 \mathrm{~K}) \frac{\mathrm{V}}{10 \mathrm{~K}}$. The temperature is to be measured by a thermistor with $\beta=$ 3000 K and $R_{0}=0.059 \Omega$. Use the simple linear model, $H_{\mathrm{t} 4}$, for designing your circuit. Draw a schematic, and indicate all component and supply values.

Assuming that $H_{\mathrm{t} 2}(x)$ is exact, what would the output of the circuit be at $x=$ 200 K and $x=220 \mathrm{~K}$?

Problem 2: A building has a water tank and boxes on its roof, the roof is not strong enough to hold the boxes when the tank is full so a system is needed to determine the weight of the water (so the people living under the roof will know how many boxes to remove - or should have removed-from the roof). The tank is a perfect cylinder, with its axis parallel to the plane of the roof, which is flat. (The cylinder is lying down, like a pen on a desk.) The inside of the tank is 5 meters long and the inside radius is one meter. Water level inside the tank is to be measured with (no surprise) a float. Assume that the float and anything else inside the tank have negligible volume and mass. Design a system to convert the mass of the water in the tank, x, to a floating point number $H(x)=x / \mathrm{kg}$, with an accuracy of at least 500 grams. Be sure to include the following in your solution:

- A diagram showing the float and its range of motion.
- A mapping between water level and mass.
- The choice of ADC.
- A justification for the ADC precision. (Be sure to give this a little thought).
- A schematic diagram of the conditioning circuit, simple though it can be.
- The interface routine, showing how the value read from the ADC is converted into kilograms.

Hint: Do not attempt to work with a mapping from water mass to float position. Instead, determine the water level in the interface routine, then convert to mass.

