

Transducer can be placed in one, two, or four arms.
Typical function: $H_{\mathrm{t}}(x)=R(1+x k), x k \ll 1$
where R is the nominal resistance of the transducer and k is a constant.

For simplicity write function as: $H_{\mathrm{t}}(x)=R+R_{\mathrm{s}}$,
where R is independent of the process-variable value and R_{s} is dependent on the process-variable value

Typically, $R \gg R_{\mathrm{s}}$.
Usually, need to convert R_{s} to a voltage.
$v_{o}=A\left(\frac{R_{\mathrm{B}}}{R_{\mathrm{A}}+R_{\mathrm{B}}}-\frac{R_{\mathrm{D}}}{R_{\mathrm{C}}+R_{\mathrm{D}}}\right) v_{\mathrm{E}}$.

Complementary Pairs

Frequently, transducer pairs can have complementary responses.
If so, there are two (usually identical) transducers...
... positioned so they react oppositely to the process variable...
...so that when their responses are subtracted...
...their response to the process variable add...
...and unwanted quantities cancel out.

For example, consider

$$
H_{\mathrm{t} 1}(x)=R(1+x k) \text { and } H_{\mathrm{t} 2}(x)=R(1-x k) .
$$

Sum: $H_{\mathrm{t} 1}(x)+H_{\mathrm{t} 2}(x)=R$. (Not helpful.)
Difference: $H_{\mathrm{t} 1}(x)-H_{\mathrm{t} 2}(x)=2 x k$. (Much better.)

One-Transducer Configuration

Arm B: $\quad H_{\mathrm{t}}(x)=R+R_{\mathrm{s}}=R(1+x k)$.
Other Arms: Resistor of value R.

$$
v_{o}=A\left(\frac{R_{\mathrm{s}}}{2\left(2 R+R_{\mathrm{s}}\right)}\right) v_{\mathrm{E}} \approx A \frac{R_{\mathrm{s}}}{4 R} v_{\mathrm{E}}=A \frac{x k}{4} v_{\mathrm{E}} .
$$

Two-Transducer Configuration

Arm A: $\quad H_{\mathrm{t} 2}(x)=R-R_{\mathrm{s}}=R(1-x k)$.
$\operatorname{Arm} B: \quad H_{\mathrm{t} 1}(x)=R+R_{\mathrm{s}}=R(1+x k)$.
Other Arms: Resistor of value R.
$v_{o}=A \frac{R_{\mathrm{s}}}{2 R} v_{\mathrm{E}}=A \frac{x k}{2} v_{\mathrm{E}}$.
As one might expect, twice as sensitive.

Wheatstone Bridge Transfer Functions

Goal
Let $R_{\mathrm{t}}=R \pm R_{\mathrm{s}}=R(1 \pm x k)$ be the transducer response(s).
Assume bridge designed properly.
Need to find two functions:

$$
H_{\mathrm{c}}\left(R_{\mathrm{t}}\right)=\ldots \quad \text { and } H_{\mathrm{c}}\left(R_{\mathrm{s}}\right)=\ldots
$$

Both functions are equivalent.
Choose whichever is more convenient.
Four-Transducer Configuration
$H_{\mathrm{c}}\left(R_{\mathrm{s}}\right)=v_{o}=A \frac{R_{\mathrm{s}}}{R} v_{\mathrm{E}}$.
Let $R_{\mathrm{t}}=R+R_{\mathrm{s}}$. Then $R_{\mathrm{s}}=R_{\mathrm{t}}-R$.
$H_{\mathrm{c}}\left(R_{\mathrm{t}}\right)=A \frac{R_{\mathrm{t}}-R}{R} v_{\mathrm{E}}=A\left(\frac{R_{\mathrm{t}}}{R}-1\right) v_{\mathrm{E}}$.
Two-Transducer Configuration

$$
\begin{aligned}
& H_{\mathrm{c}}\left(R_{\mathrm{s}}\right)=v_{o}=\frac{A}{2} \frac{R_{\mathrm{s}}}{R} v_{\mathrm{E}} . \\
& H_{\mathrm{c}}\left(R_{\mathrm{t}}\right)=\frac{A}{2} \frac{R_{\mathrm{t}}-R}{R} v_{\mathrm{E}}=\frac{A}{2}\left(\frac{R_{\mathrm{t}}}{R}-1\right) v_{\mathrm{E}} .
\end{aligned}
$$

One-Transducer Configuration

$$
\begin{aligned}
& H_{\mathrm{c}}\left(R_{\mathrm{s}}\right)=v_{o}=\frac{A}{4} \frac{R_{\mathrm{s}}}{R} v_{\mathrm{E}} . \\
& H_{\mathrm{c}}\left(R_{\mathrm{t}}\right)=\frac{A}{4} \frac{R_{\mathrm{t}}-R}{R} v_{\mathrm{E}}=\frac{A}{4}\left(\frac{R_{\mathrm{t}}}{R}-1\right) v_{\mathrm{E}} .
\end{aligned}
$$

Derivation of Conditioning Circuit Needed

A Wheatstone bridge is the obvious choice because transducer response is in form $R \pm R_{\mathrm{s}}$

Nevertheless, conditioning-circuit derivation will be presented.
$H(x)=H_{\mathrm{c}}\left(H_{\mathrm{t}}(x)\right)$
(Analysis performed as though there were one transducer.)
$y=H_{\mathrm{t}}(x)=R_{\mathrm{t}}=R\left(1+x G_{f}\right)$. Then $x=\frac{\frac{y}{R}-1}{G_{f}}$.
Then $H_{\mathrm{c}}(y)=H\left(\frac{\frac{y}{R}-1}{G_{f}}\right)=10^{6} \frac{\frac{y}{R}-1}{G_{f}} \mathrm{~V}$.
Response for two-transducer configuration: $H_{\mathrm{c}}\left(R_{\mathrm{t}}\right)=\frac{A}{2}\left(\frac{R_{\mathrm{t}}}{R}-1\right) v_{\mathrm{E}}$.
Choose A and v_{E} so that $\frac{A}{2} v_{\mathrm{E}}=\frac{10^{6}}{G_{f}} \mathrm{~V}$ is satisfied.
For example, $v_{\mathrm{E}}=10 \mathrm{~V}$ and $A=10^{5}$.

