| 07-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07-1 | 07-2 07                                                                                                                                                                                                                                                                                                                                                                       | 7-2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Kelvin's <u>Thermodynamic</u> Temperature Scale                                                                                                                                                                                                                                                                                                                               |     |
| Definition: The translational $(e.g., wiggling around)$ energy<br>of particles in a system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Due to William Thomson, a.k.a., Lord Kelvin (1824-1907).                                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Start with a precise temperature that can easily be reproduced.                                                                                                                                                                                                                                                                                                               |     |
| No practical way to measure<br>velocity of every particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | The triple point of water, $T_{tr}$ , is used.                                                                                                                                                                                                                                                                                                                                |     |
| in most systems of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | $T_{\rm tr}$ is temperature at which<br>water can simultaneously be in                                                                                                                                                                                                                                                                                                        |     |
| Instead, temperature scales are defined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | the solid, liquid, and gas states: 0.01 °C.                                                                                                                                                                                                                                                                                                                                   |     |
| There are two types:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | • Confine an ideal gas in a container of fixed volume, S.                                                                                                                                                                                                                                                                                                                     |     |
| • The thermodynamic temperature scale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | • Bring the gas to temperature $T_{\rm tr}$ .                                                                                                                                                                                                                                                                                                                                 |     |
| "Really" measures temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Call the pressure of this gas $P_{\rm tr}$ .<br><u>By definition</u> (of the Kelvin scale) this temperature is $T_{\rm tr} \triangleq 273.16$ K.                                                                                                                                                                                                                              |     |
| • Practical temperature scales.<br>Approximations of thermodynamic scale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | The ideal gas law: $PS = n\Re T$ .                                                                                                                                                                                                                                                                                                                                            |     |
| Much easier to measure temperature on a practical scale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Substituting, $P_{\rm tr}S = n\Re 273.16{\rm K}$ . Then $n\Re = \frac{P_{\rm tr}S}{273.16{\rm K}}$ .                                                                                                                                                                                                                                                                          |     |
| For temperatures of interest, differences are very small.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | • Bring the same system to another temperature, $T$ .                                                                                                                                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Call the pressure at this temperature, $P$ .                                                                                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Solving for T in the gas law: $T = \frac{PS}{n\Re}$ .                                                                                                                                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Substituting for $n\Re$ using the quantity obtained above yields                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | $T = PS \frac{273.16 \mathrm{K}}{P_{\mathrm{tr}}S} = 273.16 \mathrm{K} \frac{P}{P_{\mathrm{tr}}}.$                                                                                                                                                                                                                                                                            |     |
| 07-1 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isli07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07-1 | 07-2 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from IsB07. 07                                                                                                                                                                                                                                                                                             | 7-2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                               |     |
| 07-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07-3 | 07-4 07                                                                                                                                                                                                                                                                                                                                                                       | 7-4 |
| <b>07-3</b><br>Practical Temperature Scale <u>s</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07-3 | 07-4 07<br>For ITS-90:                                                                                                                                                                                                                                                                                                                                                        | 7-4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07-3 | For ITS-90:<br>• (.65 K, 5.0 K)                                                                                                                                                                                                                                                                                                                                               | 7-4 |
| Practical Temperature Scales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07-3 | For ITS-90:<br>• (.65 K, 5.0 K)<br>Vapor-pressure relation between two isotopes of helium.                                                                                                                                                                                                                                                                                    | 7-4 |
| Practical Temperature Scale <u>s</u><br>Designed to be easy (relatively) to measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> </ul>                                                                                                                                                                                          | 7-4 |
| Practical Temperature Scale <u>s</u><br>Designed to be easy (relatively) to measure.<br>Scales are revised every few decades.<br>Latest revision in 1990, called ITS-90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07-3 | For ITS-90:<br>• (.65 K, 5.0 K)<br>Vapor-pressure relation between two isotopes of helium.<br>• (3.0 K, 24.5561 K)                                                                                                                                                                                                                                                            | 7-4 |
| Practical Temperature Scale <u>s</u><br>Designed to be easy (relatively) to measure.<br>Scales are revised every few decades.<br>Latest revision in 1990, called ITS-90.<br>(International Temperature Scale.)<br>Older scale (1968), IPTS-68.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,</li> </ul>                                                                                                                                  | 7-4 |
| Practical Temperature Scales<br>Designed to be easy (relatively) to measure.<br>Scales are revised every few decades.<br>Latest revision in 1990, called ITS-90.<br>(International Temperature Scale.)<br>Older scale (1968), IPTS-68.<br>(International Practical Temperature Scale)<br>Difference between ITS-90 and IPTS-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)</li> </ul>                                                      | 7-4 |
| Practical Temperature Scales<br>Designed to be easy (relatively) to measure.<br>Scales are revised every few decades.<br>Latest revision in 1990, called ITS-90.<br>(International Temperature Scale.)<br>Older scale (1968), IPTS-68.<br>(International Practical Temperature Scale)<br>Difference between ITS-90 and IPTS-68<br>is as large as 0.4 °C at 800 °C.<br>At human-tolerable temperatures,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scales</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90.<br/>(International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68.<br/>(International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68<br/> is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures,<br/> difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                          | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scales</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90. (International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68. (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68</li> <li> is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures,</li> <li> difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> <li>How a practical temperature scale is defined:</li> <li>A set of fixed points is established,</li> </ul>                                                                                                                                                                                                                                                                                                  | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scales</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90. (International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68. (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68 (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68 ( is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures, ( difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> <li>How a practical temperature scale is defined:</li> <li>A set of fixed points is established, ( for example the triple point of water.</li> <li>A temperature is assigned to each fixed point,</li> </ul>                                                                                                                      | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scales</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90. (International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68. (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68</li> <li> is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures,</li> <li> difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> <li>How a practical temperature scale is defined:</li> <li>A set of fixed points is established,</li> <li> for example the triple point of water.</li> <li>A temperature is assigned to each fixed point,</li> <li> based on the thermodynamic scale.</li> </ul>                                                                                                                                             | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scales</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90. (International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68. (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68 is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures, difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> <li>How a practical temperature scale is defined:</li> <li>A set of fixed points is established, for example the triple point of water.</li> <li>A temperature is assigned to each fixed point,</li> </ul>                                                                                                                                                                                                                       | 07-3 | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scales</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90. (International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68. (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68 is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures, difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> <li>How a practical temperature scale is defined:</li> <li>A set of fixed points is established, for example the triple point of water.</li> <li>A temperature is assigned to each fixed point, based on the thermodynamic scale.</li> <li>Accurate thermometers (transducers) are chosen.</li> <li>Functions are defined mapping the thermometers' output to temperature</li> </ul>                                             |      | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |
| <ul> <li>Practical Temperature Scaleg</li> <li>Designed to be easy (relatively) to measure.</li> <li>Scales are revised every few decades.</li> <li>Latest revision in 1990, called ITS-90. (International Temperature Scale.)</li> <li>Older scale (1968), IPTS-68. (International Practical Temperature Scale)</li> <li>Difference between ITS-90 and IPTS-68 is as large as 0.4 °C at 800 °C.</li> <li>At human-tolerable temperatures, difference is in hundreths of a degree.</li> <li>All practical scales are identical at the triple point of water.</li> <li>How a practical temperature scale is defined:</li> <li>A set of fixed points is established, for example the triple point of water.</li> <li>A temperature is assigned to each fixed point, based on the thermodynamic scale.</li> <li>Accurate thermometers (transducers) are chosen.</li> <li>Functions are defined mapping the thermometers' output to temperature so that they pass through the fixed points.</li> </ul> |      | <ul> <li>For ITS-90:</li> <li>(.65 K, 5.0 K)<br/>Vapor-pressure relation between two isotopes of helium.</li> <li>(3.0 K, 24.5561 K)<br/>Helium fixed-volume thermometer.</li> <li>(Like thermometer used in thermodynamic scale,<br/> except helium replaces the ideal gas.)</li> <li>(13.8033 K, 1234.93 K)<br/>Resistance of platinum.</li> <li>&gt; 1234.93 K:</li> </ul> | 7-4 |

| )7-5                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-5           | 07-6                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07-6                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                          | Temperature Transducers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                                                                                     | Thermistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
| Basic Type                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Name: <u>Therm</u> al r                                                                                                                                                                                             | esi <u>stor</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
| • Therr<br>Block                                                                                                                                                                                                                         | nistor.<br>of semiconductor material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | $-(\sqrt{7})$                                                                                                                                                                                                       | $\rightarrow + \infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| Resist                                                                                                                                                                                                                                   | tance is a function of temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Symbols:                                                                                                                                                                                                            | (Both are used.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
|                                                                                                                                                                                                                                          | tance Temperature Device (RTD) of metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Construction:                                                                                                                                                                                                       | ge: about $-100$ °C to 200 °C. (Relatively narr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ow.)                          |
| Resist                                                                                                                                                                                                                                   | tance is a function of temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | block of sem                                                                                                                                                                                                        | iconductor material (without junction).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
|                                                                                                                                                                                                                                          | nocouple.<br>tial across two metals is a function of temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e.             | Principle of Oper                                                                                                                                                                                                   | ation<br>miconductors,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| • Diode<br>Forwa<br>ered.)                                                                                                                                                                                                               | ard-bias voltage is a function of temperature. (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lot cov-       | electron er<br>valence an                                                                                                                                                                                           | ergy levels divided into two bands,<br>d <i>conduction</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| Integrated                                                                                                                                                                                                                               | Temperature Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                                                                                     | s in conduction band participate in current flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
| Transe                                                                                                                                                                                                                                   | ducer and factory-calibrated conditioning circuit<br>mbined in a single package.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | The number of                                                                                                                                                                                                       | s in valence band do not. <sup>1</sup><br>of electrons in conduction band<br>vith temperature,                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
|                                                                                                                                                                                                                                          | y available as current or voltage sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | reducing r                                                                                                                                                                                                          | * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
|                                                                                                                                                                                                                                          | nt or voltage is a convenient, linear function of tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ature.         | Resistance is                                                                                                                                                                                                       | determined by the density of conduction electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| 7.5                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07.5           | <sup>1</sup> Actually they do, but that's                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07                            |
| )7-5                                                                                                                                                                                                                                     | EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from isli07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07-5           | 07-6 EE 4770                                                                                                                                                                                                        | a hole other story.<br>Lecture Transparency. Formatted 9:44, 2 February 1998 from lali07.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| )7-7                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-5           |                                                                                                                                                                                                                     | Lecture Transparency. Formatted 9:44, 2 February 1998 from lali07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| )7-7                                                                                                                                                                                                                                     | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 07-6 EE 4770                                                                                                                                                                                                        | Lecture Transparency. Formatted 9.44, 2 February 1998 from Isli07.<br>Thermistor Sample Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07-                           |
| 07-7<br>Desirable (<br>• Sensit<br>(Smal                                                                                                                                                                                                 | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-7           | 07-6 EE 4770<br>07-8<br>Сопvert process<br>room 102 EI                                                                                                                                                              | Lecture Transparency. Formatted 9.44, 2 February 1998 from billo7.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br><i>E</i> Building into $H(x) = x \frac{1}{K}$ , a floating-point of                                                                                                                                                                                                                                                                                            | 07.<br>re in<br>num-          |
| 07-7<br>Desirable (<br>• Sensit<br>(Smal<br>in res<br>• Can b                                                                                                                                                                            | Characteristics<br>tive.<br>Il change in temperature yields an easily readable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07-7           | 07-6 EE 4770<br>07-8<br>Convert process<br>room 102 EI<br>ber. The nu                                                                                                                                               | Lecture Transparency. Formatted 9.44, 2 February 1998 from bill07.<br>Thermistor Sample Problem<br>wariable $x \in [-10 \text{ °C}, 50 \text{ °C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point $r$<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{2}{\pi}}$ with $\beta = 3000$ K                                                                                                                                                                                    | 07-<br>re in<br>num-<br>ther- |
| D7-7<br>Desirable (<br>• Sensit<br>(Smal<br>in res<br>• Can b<br>(Smal<br>• High                                                                                                                                                         | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>pe made very small.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07-7           | 07-6 EE 4770<br>07-8<br>Convert process<br>room 102 EI<br>ber. The nu<br>mistor and t                                                                                                                               | Lecture Transparency. Formatted 9.44, 2 February 1998 from bill07.<br>Thermistor Sample Problem<br>wariable $x \in [-10 \text{ °C}, 50 \text{ °C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point $r$<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{2}{\pi}}$ with $\beta = 3000$ K                                                                                                                                                                                    | 07-<br>re in<br>num-<br>ther- |
| D7-7<br>Desirable (<br>• Sensit<br>(Smal<br>in res<br>• Can b<br>(Smal<br>• High<br>(Easie                                                                                                                                               | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>De made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.                                                                                                                                                                                                                                                                                                                                                                                          | 07-7           | 07-6 EE 4770<br>07-8<br>$Convert \ process$<br>$room \ 102 \ El$<br>ber. The nu<br>mistor and t<br>$R_0 = 0.059 \ G$                                                                                                | Lecture Transparency. Formatted 9.44, 2 February 1998 from billo7.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{\pi}}$ with $\beta = 3000 \text{K}$<br>2.                                                                                                                                                        | 07-<br>re in<br>num-<br>ther- |
| <ul> <li>Desirable (</li> <li>Sensit<br/>(Smal<br/>in res</li> <li>Can b<br/>(Smal</li> <li>High<br/>(Easie</li> <li>Undesirabl</li> <li>Delica</li> </ul>                                                                               | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>De made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics<br>ate.                                                                                                                                                                                                                                                                                                                     | 07-7           | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ Solution \ Plan:$<br>• Choose ADC<br>• Based on AI                                                    | Lecture Transparency. Formatted 9.44, 2 February 1998 from bill07.<br>Thermistor Sample Problem<br>wariable $x \in [-10 \text{ °C}, 50 \text{ °C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point $r$<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000$ K<br>E.<br>DC input voltage, design conditioning circuit.                                                                                                                          | 07-<br>re in<br>num-<br>ther- |
| D7-7<br>Desirable (<br>Sensit<br>(Smal<br>in res<br>• Can t<br>(Smal<br>• High<br>(Easid<br>Undesirabl<br>• Delica<br>Can t                                                                                                              | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>be made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics                                                                                                                                                                                                                                                                                                                             | 07-7           | 07-6<br>$Convert \ process$<br>$room \ 102 \ EL$<br>$ber. \ The \ nu}$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ G$<br>Solution Plan:<br>• Choose ADC<br>• Based on AI<br>• Based on AI                               | Lecture Transparency. Formatted 9-44, 2 February 1998 from hillo7.<br>Thermistor Sample Problem<br>variable $x \in [-10 \text{ °C}, 50 \text{ °C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000$ K b.                                                                                                                                                                                | 07-<br>re in<br>num-<br>ther- |
| <ul> <li>Desirable (</li> <li>Sensit<br/>(Smal<br/>in res</li> <li>Can b<br/>(Smal</li> <li>High<br/>(Easid</li> <li>Undesirabl</li> <li>Delica<br/>Can b</li> <li>There</li> </ul>                                                      | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>De made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics<br>ate.<br>De damaged (de-calibrated) by excessive heat.                                                                                                                                                                                                                                                                    | 07-7           | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>e Choose ADC<br>e Based on AI<br>e Based on AI<br>ADC Choice                  | Lecture Transparency. Formatted 9.44, 2 February 1998 from billo7.<br>Thermistor Sample Problem<br>wariable $x \in [-10 \text{ °C}, 50 \text{ °C}]$ , the temperature<br>$G$ Building into $H(x) = x \frac{1}{K}$ , a floating-point $x$<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000$ K<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.                                                                         | 07-<br>re in<br>num-<br>ther- |
| D7-7<br>Desirable (<br>Sensit<br>(Smal<br>in res<br>Can t<br>(Smal<br>High<br>(Easie<br>Undesirabl<br>Delica<br>Can t<br>Transducer                                                                                                      | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>De made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics<br>ate.<br>De damaged (de-calibrated) by excessive heat.<br>e are many non-standard types.                                                                                                                                                                                                                                  | 07-7           | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>e Choose ADC<br>e Based on AI<br>e Based on AI<br>ADC Choice                  | Lecture Transparency. Formatted 9.44, 2 February 1998 from bil07.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000 \text{K}$<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.<br>in function $H_{\text{ADC}(5 \text{V,b})}(y) \dots$ | 07-<br>re in<br>num-<br>ther- |
| D7-7<br>Desirable (<br>• Sensit<br>(Smal<br>in res<br>• Can t<br>(Smal<br>• High<br>(Easie<br>Undesirabl<br>• Delica<br>Can t<br>• There<br>Transduces<br>All fu                                                                         | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>De made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>de Characteristics<br>ate.<br>De damaged (de-calibrated) by excessive heat.<br>e are many non-standard types.<br>r Model Functions                                                                                                                                                                                                             | 07-7           | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>• Choose ADC<br>• Based on AI<br>• Based on AI<br>• DC Choice<br>Use ADC with | Lecture Transparency. Formatted 9.44, 2 February 1998 from bil07.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000 \text{K}$<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.<br>in function $H_{\text{ADC}(5 \text{V,b})}(y) \dots$ | 07-<br>re in<br>num-<br>ther- |
| <ul> <li>Desirable (</li> <li>Sensit<br/>(Smal<br/>in res</li> <li>Can b<br/>(Smal</li> <li>High<br/>(Easie</li> <li>Undesirabl</li> <li>Delica<br/>Can b</li> <li>There</li> <li>Transduces</li> <li>All fur</li> <li>Very g</li> </ul> | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>De made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>de Characteristics<br>ate.<br>De damaged (de-calibrated) by excessive heat.<br>De damaged (de-calibrated) by excessive heat.<br>De are many non-standard types.<br>r Model Functions<br>nctions will be approximations.<br>good, the Steinhart-Hart Equation:                                                                                  | 07-7           | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>• Choose ADC<br>• Based on AI<br>• Based on AI<br>• DC Choice<br>Use ADC with | Lecture Transparency. Formatted 9.44, 2 February 1998 from bil07.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000 \text{K}$<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.<br>in function $H_{\text{ADC}(5 \text{V,b})}(y) \dots$ | 07.<br>re in<br>num-<br>ther- |
| D7-7<br>Desirable (<br>Sensit<br>(Smal<br>in res<br>Can b<br>(Smal<br>High<br>(Easie<br>Undesirabl<br>Delice<br>Can b<br>• There<br>Transducer<br>All fur<br>Very g                                                                      | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>be made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics<br>ate.<br>be damaged (de-calibrated) by excessive heat.<br>e are many non-standard types.<br>r Model Functions<br>nctions will be approximations.<br>good, the Steinhart-Hart Equation:<br>$H_{t1}^{-1}(y) = \left(\frac{1}{A+B\ln y + C\ln^3 y}\right)^{-1},$                                                             | 07-7<br>change | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>• Choose ADC<br>• Based on AI<br>• Based on AI<br>• DC Choice<br>Use ADC with | Lecture Transparency. Formatted 9.44, 2 February 1998 from bil07.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000 \text{K}$<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.<br>in function $H_{\text{ADC}(5 \text{V,b})}(y) \dots$ | 07-<br>re in<br>num-<br>ther- |
| 97-7<br>Desirable (<br>Sensit<br>(Smal<br>in res<br>Can t<br>(Smal<br>High<br>(Easid<br>Undesirabl<br>Delica<br>Can t<br>Transducer<br>All fur<br>Very g                                                                                 | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>be made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics<br>ate.<br>be damaged (de-calibrated) by excessive heat.<br>e are many non-standard types.<br>r Model Functions<br>nctions will be approximations.<br>good, the Steinhart-Hart Equation:<br>$H_{t1}^{-1}(y) = \left(\frac{1}{A+B\ln y + C\ln^3 y}\right)^{-1},$ where $A, B$ , and $C$ , are experimentally determined cons | 07-7<br>change | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>• Choose ADC<br>• Based on AI<br>• Based on AI<br>• DC Choice<br>Use ADC with | Lecture Transparency. Formatted 9.44, 2 February 1998 from bil07.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000 \text{K}$<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.<br>in function $H_{\text{ADC}(5 \text{V,b})}(y) \dots$ | num-<br>ther-                 |
| Desirable (<br>Sensit<br>(Smal<br>in res<br>Can t<br>(Smal<br>High<br>(Easie<br>Undesirabl<br>Delice<br>Can t<br>Transduces<br>All fur<br>Very g<br>I<br>Good:                                                                           | Characteristics<br>tive.<br>Il change in temperature yields an easily readable<br>istance.)<br>be made very small.<br>Il devices react to temperature changes quickly.)<br>resistance.<br>er to design conditioning circuit.)<br>le Characteristics<br>ate.<br>be damaged (de-calibrated) by excessive heat.<br>e are many non-standard types.<br>r Model Functions<br>nctions will be approximations.<br>good, the Steinhart-Hart Equation:<br>$H_{t1}^{-1}(y) = \left(\frac{1}{A+B\ln y + C\ln^3 y}\right)^{-1},$                                                             | 07-7<br>change | 07-6<br>$Convert \ process$<br>$room \ 102 \ El$<br>$ber. \ The \ nu$<br>$mistor \ and \ t$<br>$R_0 = 0.059 \ C$<br>Solution Plan:<br>• Choose ADC<br>• Based on AI<br>• Based on AI<br>• DC Choice<br>Use ADC with | Lecture Transparency. Formatted 9.44, 2 February 1998 from bil07.<br>Thermistor Sample Problem<br>variable $x \in [-10 ^{\circ}\text{C}, 50 ^{\circ}\text{C}]$ , the temperature<br>$E$ Building into $H(x) = x \frac{1}{K}$ , a floating-point of<br>mber should have a precision of 0.05. Use a<br>he function $H_{t2}(x) = R_0 e^{\frac{\beta}{x}}$ with $\beta = 3000 \text{K}$<br>2.<br>DC input voltage, design conditioning circuit.<br>DC precision (bits), write interface routine.<br>in function $H_{\text{ADC}(5 \text{V,b})}(y) \dots$ | 07-<br>re in<br>num-<br>ther- |

07-7

07-8

Input is a resistance (from thermistor), output is voltage. Input range to ADC is 0 to 5 V, therefore:  $\Lambda \Lambda$  $0 \le H_{\rm c}(H_{\rm t2}(x)) \le 5 \,{\rm V}$  for  $-10\,{}^{\circ}{\rm C} \le x \le 50\,{}^{\circ}{\rm C}$ Choose conditioning circuit based on this constraint. Conditioning circuit will  $\underline{\text{not}}$  linearize x. Will use gain/offset circuit. (This would be very difficult using analog circuits.) Let  $R_{\text{max}} = H_{\text{t2}}(263.15 \,\text{K}) = 5272 \,\Omega$  and Thermistor  $y = H_{t2}(x)$  is monotonic with temperature.  $R_{\min} = H_{t2}(323.15 \,\mathrm{K}) = 634.9 \,\Omega.$ In this case, when x increases y always decreases.  $H_{\rm c}(H_{\rm t2}(50\,^{\circ}{\rm C})) = H_{\rm c}(R_{\rm min}) = A_5(R_{\rm min} - O_5) = 0\,{\rm V}$ Therefore, conditioning circuit must convert either:  $H_{\rm c}(H_{\rm t2}(-10\,^{\circ}{\rm C})) = H_{\rm c}(R_{\rm max}) = A_5(R_{\rm max} - O_5) = 5\,{\rm V}$  $H_{t2}(-10 \,^{\circ}\text{C}) = 0 \,\text{V}$  and  $H_{t2}(50 \,^{\circ}\text{C}) = 5 \,\text{V}$ Therefore,  $O_5 = R_{\min}$  and  $A_5 = \frac{5 \text{ V}}{R_{\max} - R_{\min}}$ or  $H_{t2}(-10 \,^{\circ}\text{C}) = 5 \,\text{V}$  and  $H_{t2}(50 \,^{\circ}\text{C}) = 0 \,\text{V}.$ Recall  $O_5 = \frac{v_{\rm C} R_{\rm D} R_{\rm A}}{v_{\rm B} R_{\rm C}}$  and  $A_5 = \frac{R_{\rm B} v_{\rm B}}{R_{\rm D} R_{\rm A}}$ Suppose, the following are convenient values:  $R_{\rm A} = 1 \,\mathrm{k}\Omega, \, R_{\rm D} = 5 \,\mathrm{k}\Omega, \, v_{\rm B} = v_{\rm C} = 10 \,\mathrm{V}.$ Then choose  $R_{\rm C} = 7876 \,\Omega$  and  $R_{\rm B} = 539.2 \,\Omega$ . Then  $A_5 = 1.078 \text{ mA}$  and  $O_5 = 634.9 \Omega$ . So:  $H_{\rm c}(y) = 1.078 \,{\rm mA}(y - 634.9\,\Omega)$ 07-9 07-9 07-10 EE 4770 Lecture Transparency, Formatted 9:44, 2 February 1998 from Isli07. EE 4770 Lecture Transparency, Formatted 9:44, 2 February 1998 from Isli07.

07-9

Conditioning Circuit

## 07-11

## ADC Output, ADC Precision Choice

Problem specified that H(x) should have a 0.05 precision. ADC Output:

$$H_{\rm ADC(v_{ADC},b)}(H_{\rm c}(H_{\rm t2}(x))) = z = \frac{1}{v_{\rm ADC}}(2^b - 1)A_5(R_0e^{\beta/x} - O_5).$$

To determine precision evaluate at  $x_1 = 323.10$  K and  $x_2 = 323.15$  K. Difference should be no less than one.

 $H_{ADC(v_{ADC},b)}(H_{c}(H_{t2}(x_{1}))) - H_{ADC(v_{ADC},b)}(H_{c}(H_{t2}(x_{2}))) \ge 1$ 

$$\frac{1}{v_{\text{ADC}}} (2^b - 1) A_5 (R_0 e^{\beta/x_1} - R_0 e^{\beta/x_2}) \ge 1$$

Solving for b yields:

$$b \ge \left\lceil \log_2 \left( \frac{v_{\text{ADC}}}{A_5(R_0 e^{\beta/x_1} - R_0 e^{\beta/x_2})} + 1 \right) \right\rceil = 13.$$

07-12

Interface Routine

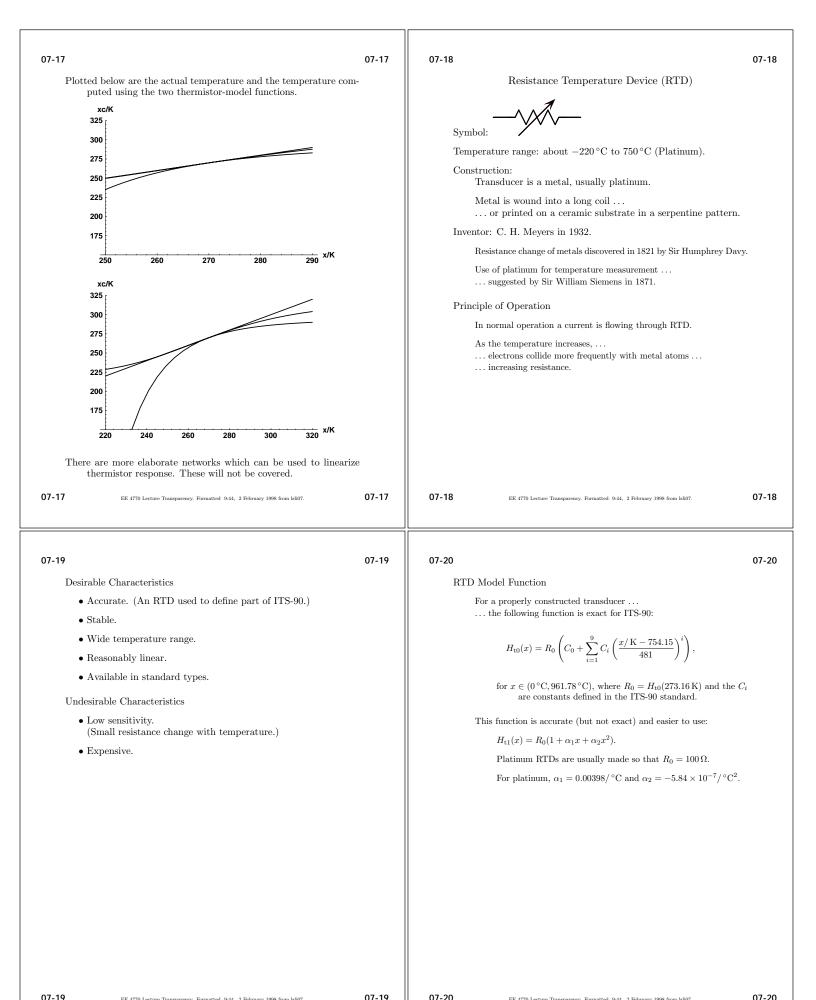
$$H_{\rm ADC(v_{ADC},b)}(H_{\rm c}(H_{\rm t2}(x))) = z = \frac{1}{v_{\rm ADC}} (2^b - 1) A_5 (R_0 e^{\beta/x} - O_5).$$

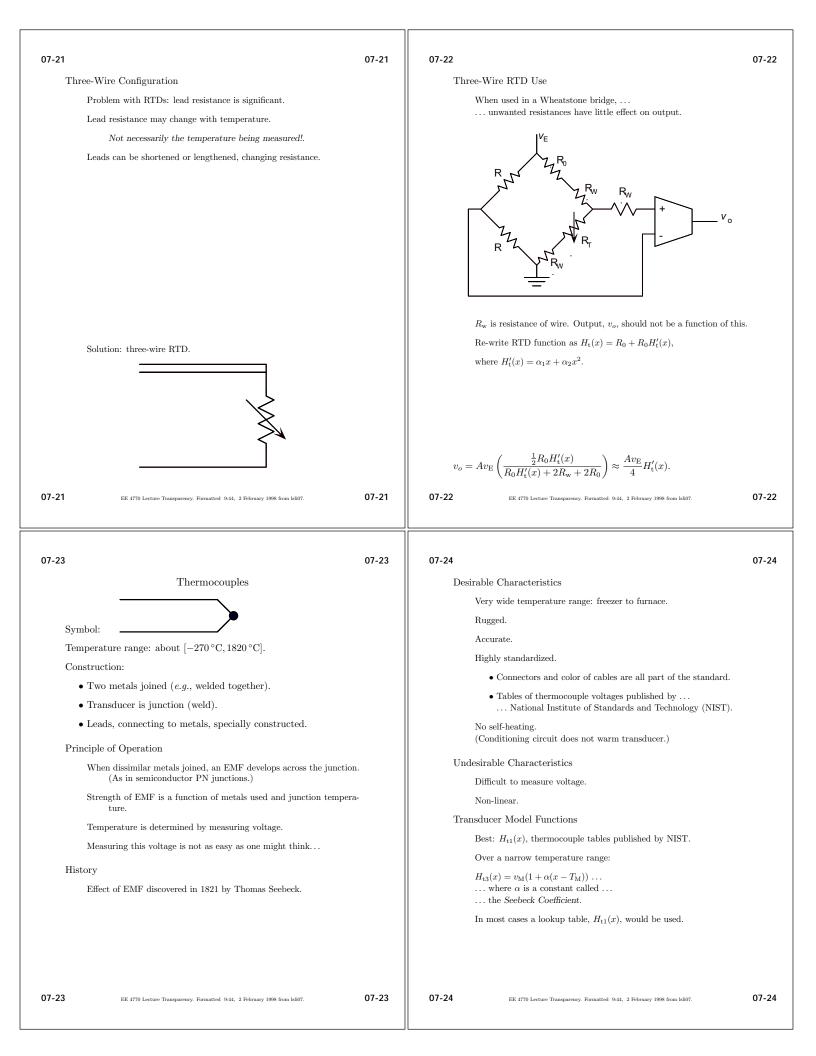
Solving for x yields

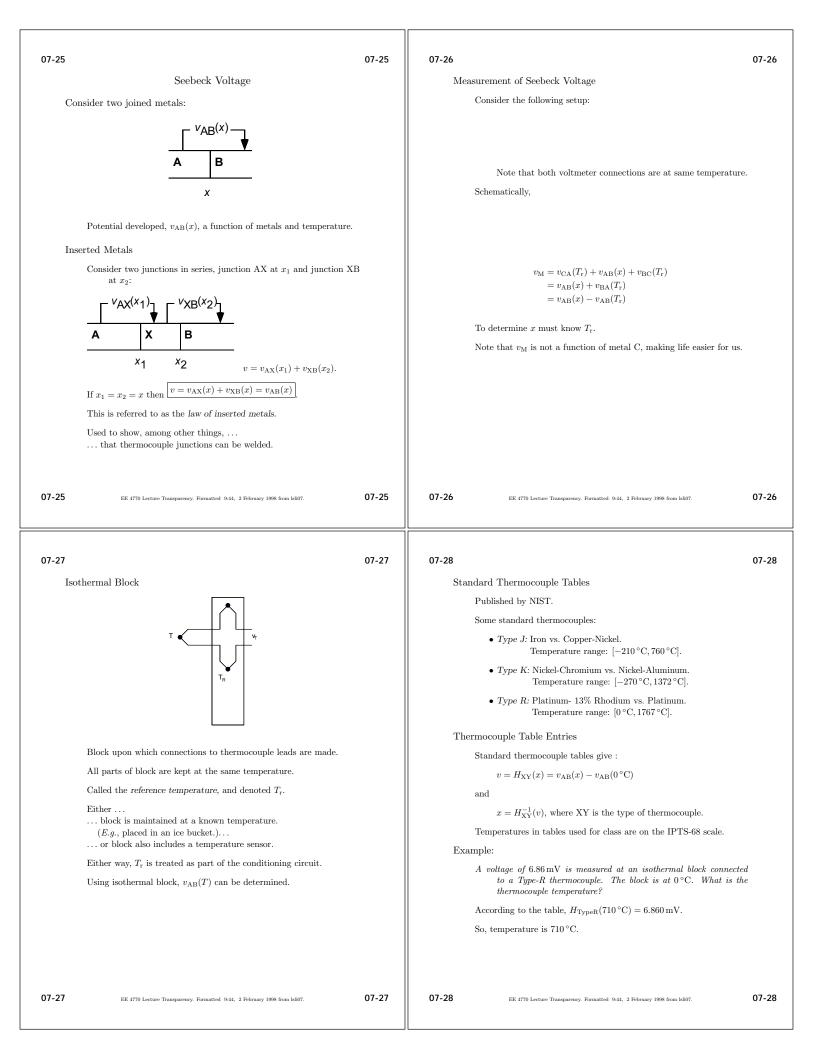
$$\begin{split} x &= \beta \left( \ln \left( \frac{O_5}{R_0} + \frac{1}{A_5 R_0} \frac{z v_{\text{ADC}}}{(2^b - 1)} \right) \right)^{-1} \\ H_{\text{f}}(H_{\text{ADC}(v_{\text{ADC}}, \mathbf{b})}(H_{\text{c}}(H_{\text{t2}}(x)))) &= H(x) = \frac{x}{\text{K}}. \\ H_{\text{f}}(z) &= H(x) = \beta \left( \ln \left( \frac{O_5}{R_0} + \frac{1}{A_5 R_0} \frac{z v_{\text{ADC}}}{(2^b - 1)} \right) \right)^{-1} \frac{1}{\text{K}}. \end{split}$$

Substituting values:

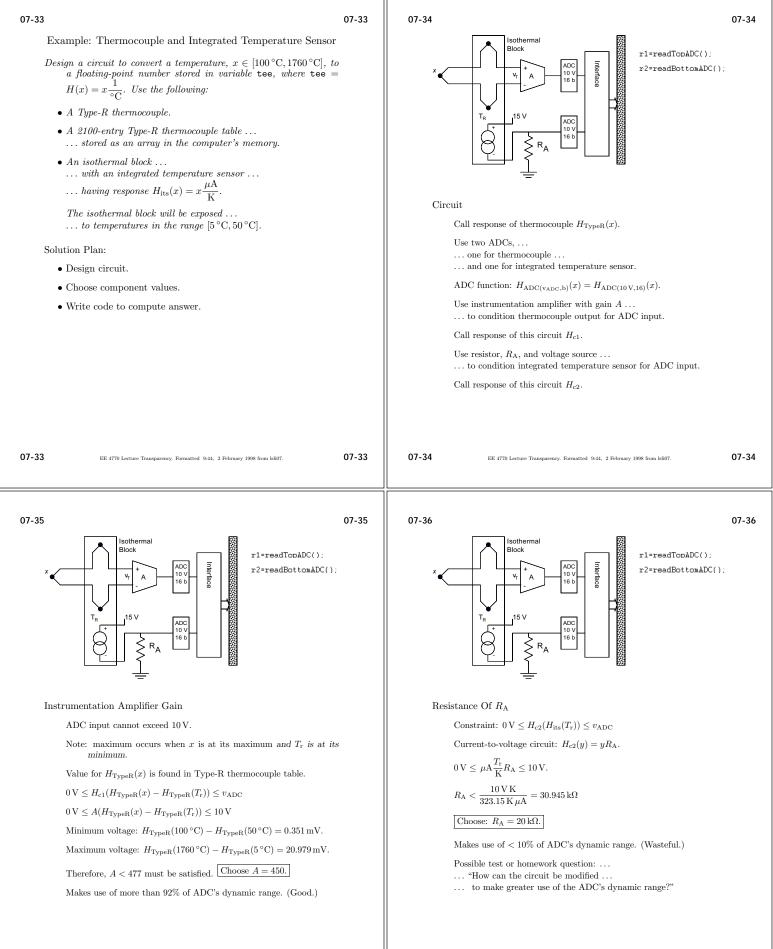
tee = 3000.0 / ( log( 10760.3 + 9.5949 \* raw )); where raw is the value read from the ADC output.


07-11


07-10


07-12




| 07-13<br>Pla | Call $T_{\rm M}$ the "middle" temperature.<br>(Center of range of temperatures to measure.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07-13 |                                                          | However, if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | et amplifié<br>aperature<br>le, $H(x) =$<br>f a wide te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er could                                                                                                                                                                        | voltage.<br>) V, for $x \in$                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                | 07-14                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|              | Goal: derive function in form $H_{t4}(x) = R_M(1 + \alpha \Delta x) \dots$<br>$\dots$ where $R_M$ and $\alpha$ are constants to be determined $\dots$<br>$\dots$ and $\Delta x = x - T_M$ .<br>Temporarily set $H_{t4}(x) = mx + b$ , the equation of a straight line.<br>Let $m = \left(\frac{d}{dx}H_{t2}(x)\right)\Big ^{x=T_M}$ .<br>Solve for $b$ in $mT_M + b = H_{t2}(T_M)$ .<br>Transform $mx + b$ into $R_M(1 + \alpha \Delta x)$ . Then:<br>$R_M = H_{t2}(T_M) = R_0 e^{\frac{\beta}{T_M}}$ and $\alpha = -\frac{\beta}{T_M^2}$<br>Note: derivation can also be done using a more accurate model than $H_{t2}(x)$ . |       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 07-13        | EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isli07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07-13 | 07-14                                                    | EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4770 Lecture Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsparency. Formatted                                                                                                                                                            | 9:44, 2 February 199                                                                                                                                           | 8 from lsli07.                                                                                                                                                                                                                                                                                                                                                                                 | 07-14                                                |
| 07-15        | Passive Conditioning Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07-15 | 07-16                                                    | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ermistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Linearizatio                                                                                                                                                                    | on Sample l                                                                                                                                                    | Problem                                                                                                                                                                                                                                                                                                                                                                                        | 07-16                                                |
| Ide          | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | R <sub>t</sub><br>R <sub>t</sub><br>R <sub>t</sub><br>TI | $\begin{array}{l} \text{pmpute the r}\\ temperatu\\ thermistor\\ just prese\\ Base the of (250 \text{ K}) = 96\\ (270 \text{ K}) = 39\\ (290 \text{ K}) = 18\\ \text{where } R_t(7)\\ \text{ature}\\ \text{where } R_t(7)\\ \text{ature}\\ \text{mermistor mo}\\ H_{t4}(x) = R\\ \text{where } T_{\text{M}} = \\ \text{mermistor mo}\\ H_{t4}(x) = R\\ \text{where } T_{\text{M}} = \\ \frac{1}{4}(R_{t4}) = \frac{1}{\alpha}\left( \\ \frac{1}{2} \\ \frac{1}{$ | nodel err<br>res 250 K asi<br>nted) des<br>error on t<br>503 $\Omega$ ,<br>448 $\Omega$ ,<br>335 $\Omega$ ,<br>T) is the n<br>T.<br>del funct<br>$R_M(1 + \alpha(z = 270 \text{ K}, \alpha z $ | or of thermal, 270 K, and<br>unt resistor<br>igned for te<br>the following<br>neasured resist<br>ions.<br>$(x - T_M)$ and<br>$(z = -\frac{\beta}{T_M^2} = -\frac{1}{2}$<br>are: | stor function<br>l 290  K for<br>$(the passive mperature n measureme: tance of the t H_{t3}(x) = \frac{R_{\text{M}}}{2}0.04115$ and<br>$H_{t3}^{-1}(R_{t3}) =$ | $\frac{\operatorname{Ins} H_{t4} \text{ and}}{\operatorname{a thermistor}}$ $\frac{\operatorname{Ins} H_{t4} \text{ and}}{\operatorname{conditioning}}$ $\frac{\operatorname{Ins} [250 \text{ K}, 2]}{\operatorname{Ints}}$ $\frac{\operatorname{Ints} (1 + \frac{\alpha}{2}(x - 1))$ $R_{M} = 3948 \Omega.$ $\frac{2}{\alpha} \left(2\frac{R_{t3}}{R_{M}} - 1\right)$ $\operatorname{Actual}$ | r and a circuit290 K].<br>temper-<br>$T_{\rm M}$ )), |
| 07-15        | EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isli07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07-15 | 07-16                                                    | EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4770 Lecture Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsparency. Formatted                                                                                                                                                            | 9:44, 2 February 199                                                                                                                                           | 8 from lsli07.                                                                                                                                                                                                                                                                                                                                                                                 | 07-16                                                |







| 07-29                                                                                                                                                                                                              | 07-29   | 07-30                                                                                                                   | 07-30 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|-------|
| When Isothermal Block is not at $0^{\circ}\mathrm{C}:$                                                                                                                                                             |         | Ice-Bath Circuits                                                                                                       |       |
| Recall, $H_{XY}(x) = v_{XY}(x) - v_{XY}(0 \circ C).$                                                                                                                                                               |         | Compensate for temperature of isothermal block.                                                                         |       |
| Consider a measurement where $T_r \neq 0$ °C.                                                                                                                                                                      |         | Other Names:                                                                                                            |       |
| Then we need: $v_{XY}(x) - v_{XY}(T_r)$ .                                                                                                                                                                          |         | Electronic ice point.                                                                                                   |       |
| This is equal to $H_{XY}(x) - H_{XY}(T_r)$ .                                                                                                                                                                       |         | Hardware compensation.                                                                                                  |       |
| Example:                                                                                                                                                                                                           |         | Details                                                                                                                 |       |
| A voltage of $6.860 \mathrm{mV}$ is measured at an isothermal block connected                                                                                                                                      | ,       | Consider an isothermal block                                                                                            |       |
| to a Type-R thermocouple. The block is at 23 °C. What is the thermocouple temperature?                                                                                                                             |         | with a built-in temperature transducer.<br>A circuit which converts the voltage at the thermocouple leads               |       |
| By the Type-R thermocouple table $\label{eq:type-R} \begin{split} & \dots \\ H_{\rm TypeR}(710\ {\rm ^{\circ}C}) = 6.860\ {\rm mV}  \text{and}  H_{\rm TypeR}(23\ {\rm ^{\circ}C}) = 0.129\ {\rm mV}. \end{split}$ |         | from $v_{XY}(x) - v_{XY}(T_r)$ ,<br>to $v_{XY}(x) - v_{XY}(0 \ ^{\circ}C)$<br>is called an electronic ice bath circuit. |       |
| Measured voltage is $v_{\text{TypeR}}(x) - v_{\text{TypeR}}(T_{\text{r}}) = 6.860 \text{ mV}.$                                                                                                                     |         | These can be built from passive components or active devices.                                                           |       |
| Subtract $v_{\rm TypeR}(0^{\rm o}{\rm C})$ from both sides and solve for $v_{\rm TypeR}(x) - v_{\rm TypeR}(x)$                                                                                                     | (0 °C). | An example of an ice-bath circuit                                                                                       |       |
| Substituting values, $v_{\rm TypeR}(x) - v_{\rm TypeR}(0^{\circ}{\rm C}) = 6.989{\rm mV}.$                                                                                                                         |         | will follow integrated temperature sensors.                                                                             |       |
| Based on table, $x = 721 ^{\circ}\text{C}$ .                                                                                                                                                                       |         |                                                                                                                         |       |
|                                                                                                                                                                                                                    |         |                                                                                                                         |       |
| 07-29 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isilo7.                                                                                                                                   | 07-29   | 07-30 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isli07.                                        | 07-30 |
| 07-31                                                                                                                                                                                                              | 07-31   | 07-32                                                                                                                   | 07-32 |
| Integrated Temperatures Sensors                                                                                                                                                                                    |         | Typical Functions                                                                                                       |       |
| 1+                                                                                                                                                                                                                 |         | Voltage type: $H_{t1}(x) = x \frac{10 \mathrm{mV}}{\mathrm{K}}$ .                                                       |       |
|                                                                                                                                                                                                                    |         |                                                                                                                         |       |
|                                                                                                                                                                                                                    |         | Current type: $H_{t1}(x) = x \frac{\mu A}{K}$ .                                                                         |       |
| $\downarrow$ $\downarrow$                                                                                                                                                                                          |         | Use                                                                                                                     |       |
| Symbols: (current source type) (volt. source type).                                                                                                                                                                |         | Current type must have at least several volts bias.                                                                     |       |
| Temperature range: about $-100^{\circ}\mathrm{C}$ to 200 $^{\circ}\mathrm{C}.$ (Relatively narrow.)                                                                                                                |         | Current type best<br>when resistance of leads may be significant,                                                       |       |
| Construction:<br>Transducer (usually diode) mounted<br>in same package as conditioning circuit.                                                                                                                    |         | as when long leads are used.                                                                                            |       |
| Principle of Operation                                                                                                                                                                                             |         |                                                                                                                         |       |
| Temperature is sensed by some transducer.                                                                                                                                                                          |         |                                                                                                                         |       |
| Conditioning circuit converts temperature to<br>a voltage or current<br>(depending on type).                                                                                                                       |         |                                                                                                                         |       |
| Voltage or current output is in user (engineer)-friendly form.                                                                                                                                                     |         |                                                                                                                         |       |
| Desirable Characteristic                                                                                                                                                                                           |         |                                                                                                                         |       |
| • Linear, human-oriented output.<br>( <i>E.g.</i> , current in microamps is temperature in Kelvins.)                                                                                                               |         |                                                                                                                         |       |
| Undesirable Characteristics                                                                                                                                                                                        |         |                                                                                                                         |       |
| • Narrow temperature range.                                                                                                                                                                                        |         |                                                                                                                         |       |
| • Slow response to temperature changes.                                                                                                                                                                            |         |                                                                                                                         |       |
| • Fragile.                                                                                                                                                                                                         |         |                                                                                                                         |       |
| 07-31 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isil07.                                                                                                                                   | 07-31   | 07-32 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from bill07.                                        | 07-32 |



| 07-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-37 | 07-38                                                                                                                                                                                                                                                                                                  | 07-38 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Interface Routine<br>Call the value read from the thermocouple input r1<br>and call value from integrated temperature sensor r2.<br>r1 = $H_{ADC(10V,16)}(H_{c1}(H_{TypeR}(x) - H_{TypeR}(T_r)))$<br>Need to satisfy:<br>$H_{f}(H_{ADC(10V,16)}(H_{c1}(H_{TypeR}(x) - H_{TypeR}(T_r)))) = H(x) = \frac{x}{cC}$<br>Let $z = H_{ADC(10V,16)}(H_{c1}(H_{TypeR}(x) - H_{TypeR}(T_r)))$ and solve for<br>$x = H_{TypeR}^{-1}\left(z\frac{v_{ADC}}{2^{b}-1}\frac{1}{A} + H_{TypeR}(T_r)\right)$ .<br>$H_{f}(z) = H(x) = \frac{x}{K} - 273.15$<br>Next find $T_r$ .<br>$r_2 = H_{ADC}(H_{c2}(H_{its}(T_r)))$ . Solving, $T_r = \frac{r_2Kv_{ADC}}{(2^{b}-1)\mu AR_A}$ .<br>Let function hTyR(T) return the thermocouple voltage<br>at temperature T with reference temperature 0°C.<br>Let function hTyRi (v) return the thermocouple temperature 0.<br>when the measured voltage is v with reference temperature 0.<br>Then:<br>double t_ref = r2 * 7.6293E-9; /* = $r_2\frac{1}{R_A}\frac{v_{ADC}}{2^{b}-1}$ */<br>double tee = hTyRi(r1 * 3.390E-7 + hTyR(t_ref)) - 273.1 | ∘C.   | Lookup Function<br>Store Type-R thermocouple table (from NIST) in a 2100-entry arra<br>Function hTyR(T) returns voltage if there is an entry for T.<br>Otherwise, it looks up two closest values in table.<br>A voltage is interpolated and returned.<br>Function hTyRi(T) works in a similar fashion. |       |
| 07-37 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from Isli07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07-37 | 07-38 EE 4770 Lecture Transparency. Formatted 9:44, 2 February 1998 from bill07.                                                                                                                                                                                                                       | 07-38 |