

			1		
10-1	Strain, Force, and Pressure	10-1	10-2	Strain	10-2
<i>Force</i> is that whic	h results in acceleration (when forces don't cancel).		Consider an	object in two situations: with and without a force applied.	
Strain is the change in shape of an object				e applied along a dimension.	
usually due to some force. (Force is usually called stress in this context.)			Let L_1 be th	e length of the object along the dimension when no force is applied.	
Pressure is force p			Let L_2 be the	e length when the force is applied.	
<i>T lessure</i> is force p	er umt area.		Then the ob	ject's strain is defined to be $\frac{L_2 - L_1}{L_1}$.	
			The symbol	ϵ is usually used to denote strain.	
			In most situ	ations, strains of interest will be very small, $ \epsilon < 0.0001$.	
10-1	EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from isli10.	10-1	10-2	EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-2
10-3		10-3	10-4		10-4
10-5	Strain Transducers	10-5		Operation For Both Types	10-4
Called strain gaug				aintains an almost constant volume with strain.	
Symbol: no comm	on symbol.			uctor is not compressible.	
Construction					
			$\begin{array}{c} \text{Recall that th} \\ L \text{ is its len} \end{array}$	the resistance of a conductor is $R = \rho \frac{L}{A}$, where gth,	
			A is its are	ea, and	
			ρ is its resi	e causes length of the conductor to decrease.	
				does not change much, area must increase.	
Flexible card with s	trip of some conductor arranged in special pattern.		Thus, resistar		
	lued) onto the object being measured.				
	y a metal or semiconductor.				
Pattern is chosen so	b that strain (to be measured) ection of current flow.				
Current is passed th	rough conductor.				
10-3	EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Iali10.	10-3	10-4	EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-4

10-5		10-6	10-6
Model Function		Complementary Pairs	
$H_{t1}(x) = R_0(1 + G_f x),$ where G_f is a constant called the gauge factor.		In some cases the strain in two places on the object will be of equal magnitude—but opposite sign.	
For metal strain gauges, $G_f = 2$. (An integer!) For semiconductor strain gauges G_f is much higher.		For example, a cantilever beam:	
		Strain Gauges	
		The upper part of beam is stretched (positive strain) and the lower part of beam is compressed (negative strain).	
		The two strain gauges therefore form complementary pairs.	
10-5 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-5	10-6 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-6
10-7	10-7	10-8	10-8
Derivation of Gauge Factor for Ideal Metal		The Block Suffering Strain ϵ	
Ideal metal's properties:		Call new length L_2 .	
• Non-compressible. (Does not change volume.)		By definition of strain,	
• Resistivity is constant.		$L_2 = L_1(1+\epsilon).$	
		Resistance in terms of R_1 and ϵ :	
Consider an Ideal Metal Block		$R_2 = \rho \frac{L_2}{L_2}$	
Regardless of strain: volume is S and resistivity is ρ .		$R_2 = \rho \frac{L_2}{A_2}$ $= \rho \frac{L_2^2}{S}$	
When unstrained: call length L_1 , area A_1 , and resistance R_1 .		$=\rho \frac{\left(L_1(1+\epsilon)\right)^2}{S}$ $=\rho \frac{L_1^2(1+\epsilon)^2}{S}$	
By standard resistivity formula: $R_1 = \rho \frac{L_1}{A_1}$.		$=\rho \frac{1}{S}$ $=R_1(1+\epsilon)^2$ $=R_1(1+2\epsilon+\epsilon^2)$	
Since volume fixed: $A_1 = S/L_1$.		$=R_1(1+2\epsilon+\epsilon^{-})\\\approx R_1(1+2\epsilon)$	
Resistance can be found in terms of length and area: $R_1 = \rho \frac{L_1^2}{S}.$		When ϵ is small simplified form close to the exact form.	
10-7 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-7	10-8 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-8

10-9		10-10	10-10
Effect of Temperature		Typical Strain Gauge Conditioning Circuit	
Physically, a strain gauge is not much different from an RTD \ldots		Consider model function including temperature effect:	
and so, alas, strain gauge affected by temperature therefore temperature compensation needed.		$H_{t1}(x) = R_0(T)(1 \pm G_f x),$	
Model function including temperature:		(Note that the complementary pair is indicated here by a \pm .)	
$H_{t1}(x) = R_0(T)(1 + G_f x),$		Four strain gauges are placed in the bridge in the following way:	
where resistance $R_0(T)$ is a function of temperature.			
		I VE	
Conditioning circuit must "remove" $R_0(T)$ term.		Force A C 4	
A bridge does this very well.			
		A D Strain Gauges	
		The temperature terms cancel, so:	
		$v_{\rm o} = A v_{\rm E} G_f x.$	
10-9 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-9	10-10 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-10
	10.11		10.10
10-11 Force	10-11	10-12 Small-Displacement Force Transducers Force	10-12
Definition: that which causes a mass to accelerate, $\vec{F} = m\vec{a}$.		Also called <i>load cells</i> .	
Units: Newton, $1 \text{ N} \equiv \frac{\text{kg}}{\text{m/s}^2}$; dyne, $1 \text{ dy} \equiv \frac{\text{g}}{\text{cm/s}^2}$; pound, etc.		Typical construction: Strain Gauges	
, , ,		Consists of a rigid framework,]
Types of Transducers		for example a cantilever beam.	
• Small displacement.		The force is applied at a predetermined point.	
Force bends, compresses, or stretches a part of the transducer. Change in shape usually measured using strain gauges.		Strain gauges are placed at locations chosen so that	
		their output is linearly related to force.	
• Large displacement. Force moves a part of the transducer.		The choice of location for the strain gauges and the derivation of the resulting load-cell model function	
Movement measured using displacement sensors.		is beyond the scope of this course.	
		Load cells usually packaged	
• Piezoelectric crystals. Based on a material that emits charge when compressed.		with strain gauges connected in bridge configuration.	
based on a material that emits charge when compressed.			
based on a material that emits charge when compressed.			
10-11 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Islito.	10-11	10-12 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-12

Number of distinct forces to measure at least $33/.5 + 1 = 67$. Therefore, use a 7-bit binary coded-displacement transducer. Spring displacement range: $[0, 33 \text{ mm}]$. Choose CDT which matches this range. Combined response of spring and CDT: $H_{tc}(x) = \left\lfloor \frac{x}{33N} 127 \right\rfloor$. Interface-routine code: raw = readInterface(); force = raw * 0.2598;		Symbol: Symbol: Construction and Operation Consists of a crystal of a material with piezoelectric properties. Material can be quartz, or special ceramics. Contacts are placed along two faces of crystal. Pressure is applied to the crystal. Charge appears on the surface of the crystal, proportional to the force. Model Function $H_{t1}(x) = kx$, where k is a constant with dimensions charge per pressure. That is, the output of the transducer is charge.	
10-17 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-17	10-18 EE 4770 Lecture Transparency. Formatted 8:35, 19 February 1999 from Isli10.	10-18
Typical Conditioning Circuit The output of the crystal converted to voltage cl \mathcal{C} . $\operatorname{Recall}, V = \frac{Q}{C}$. Capacitor chosen to get desired voltage range. Very high input impedance amplifier needed. Because of leakage \cdots through capacitor, amplifier, etc \cdots even when an unchanging force is applied \cdots voltage will decrease over time. Therefore, piezoelectric crystals best used \cdots for measuring changes in force \cdots exempli gratia, vibration.	10-19	10-20 Pressure Definition: force per unit area. Here, only pressure exerted by fluids (liquids, gases, and solids under certain con- tions) will be considered. Common units, $Pascal \left(1Pa = 1 \frac{N}{m^2}\right)$, kilopascal (kPa), m Hg, bar, pound per square inch. Types of Pressure Transducers • Large-Displacement Transducers. These consists of a variety of flexible containers that change size with pressure • Small-Displacement Transducers. These usually consist of a diaphragm and a strain gauge.	

