17-1 Goal: assign Outline: Rate monotor Hand priority Static schedu Source Burns & Well York: Addiso	Scheduling a priorities so that deadlines met. nic priority assignment. assignment. ling for a cyclic executive. lings, "Real-Time Systems and Programming Languages," second edition. Ner m-Wesley, 1997, chapter 13, pp. 399–440.	17-1 w	17-2 Scheduling i A system is • all events • worst-cas A distinct p	Definitions s said to be effective if it guarantees deadlines will be met. called <i>pure periodic</i> if are periodic ' deadlines are equal to their period e execution times are available for all event handlers. riority assignment is one in which no two events have same priority.	17-2
17-1	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-1	17-2	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-2
 17-3 Method for a Rate monoto A pure period each event priority of (highest period) 	Rate Monotonic Priority Assignment (RMPA) assigning priorities with goal of meeting deadlines. onic priority assignment does <u>not</u> guarantee deadlines will be met. odic system has a <i>rate monotonic priority assignment</i> when t triggers an interrupt at a distinct strong priority level rder is the same as frequency order oriority has shortest period, etc.).	17-3	17-4 Assign prior low: Rate Monot	Rate Monotonic Priority Assignment Examplerities using RMPA for the pure-periodic events described in the table be- $\underline{\text{Name}}$ Run Time Period $\underline{\text{Name}}$ Run Time Period A $5\mu\text{s}$ $30\mu\text{s}$ B $4\mu\text{s}$ $22\mu\text{s}$ C $30\mu\text{s}$ $100\mu\text{s}$ onic Priority Assignment: $\underline{\text{Event}}$ Handler $\underline{\text{Event}}$ $\underline{\text{Name}}$ $\underline{\text{Run Time}}$ $\underline{\text{Period}}$ $\underline{\text{Priority}}$ \overline{A} $5\mu\text{s}$ $30\mu\text{s}$ 2 B $4\mu\text{s}$ $22\mu\text{s}$ 3 C $30\mu\text{s}$ 1	17-4
17-3	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-3	17-4	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-4

17 5		17 5	17.4		17 /	
17-5	Effectiveness of Rate Monotonic Priority Assignment	17-0		out. DMDA is offsetive if the following welt time halds	17-0	
RMPA is not effective on all pure periodic systems.			Sate-Load Test: RMPA is effective if the following relation holds:			
Two results useful for determining effectiveness:			$\sum \frac{t_{\rm h}(e)}{t_{\rm r}(e)} < \mathcal{E} \left(2^{\frac{1}{ \mathcal{E} }} - 1\right),$			
RMPA is effective iff there exists an effective distinct strong-priority assignment.			$\sum_{e \in \mathcal{E}} t_{\mathbf{b}}(e) \qquad \qquad$			
That is, if RMPA is not effective			where \mathcal{E} is the	e set of event names $(e.g., \mathcal{E} = \{A, B, C\}),$		
the	en neither is any other assignment of distinct strong priorities.		$ \mathcal{E} $ is the num	ber of events (<i>e.g.</i> , $ E = 3$, called N in class),		
			$t_{\rm h}(e)$ is the ha	undler run time for event e ,		
			and $t_{\rm b}(e)$ is the	ne period of event e .		
				po 0.95 visual distribution of Tasks		
17-5	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-5	17-6	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-6	
17-7	Effectiveness Test Examples	17-7	17-8	Rate Monotonic Priority Assignment Example II	17-8	
Deter below Apply The re To de Respo Since Becau	$\begin{array}{rl} \mbox{mine if the RMPA scheduling for the pure-periodic events described in the table is effective.} \\ & \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		Determine if below is effect Applying the As before tes ness. Response tin Response tin Response tin Since all dea	The RMPA scheduling for the pure-periodic events described in the tall trive. Event Handler Event Priority Name Run Time Period A 5 μ s 10 μ s 3 B 4 μ s 15 μ s 2 C 6 μ s 30 μ s 1 e safe-load test: $\frac{29}{30} \approx 0.9667 \stackrel{?}{<} 3(2^{1/3} - 1) \approx 0.7798$ Set fails, meaning must compute response times to determine effective- he for C is 29 μ s, 3 A's plus 2 B's. he for B is 9 μ s. he for A is 5 μ s. dlines met, scheduling effective.	ıle	
17-7	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-7	17-8	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-8	

٦Г

Determine if the below is effective Applying the sa Test passes, so	Rate Monotonic Priority Assignment Example III e RMPA scheduling for the pure-periodic events described in the table e. Event Handler Event Priority Name Run Time Period A 4 μ s 10 μ s 3 B 3 μ s 15 μ s 2 C 5 μ s 30 μ s 1 affe-load test: $\frac{23}{30} \approx 0.7667 \stackrel{?}{<} 3(2^{1/3} - 1) \approx 0.7798$ there is no need to compute response times.	17-9 'e	 17-10 Manual Priority Assignment Theorem below shows efficient method to search for priority assignments. Let E be a set of pure periodic events, and L ∈ E. Consider all possible distinct strong priority assignments in which L has the lowest priority. Either L meets its deadlines in all of these assignments or L meets its deadlines in none of these assignments. In other words, the response time of the lowest-priority event does not change if the other priorities are rearranged. Application When assigning priorities by hand, assign lowest priority first. The event will not affect higher priority events' handlers and assignment of higher priorities can ignore lowest. 	-
17-9	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from lsli17.	17-9	17-10 EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-10
17-11	Static Scheduling	17-11	17-12 Static Scheduling Method	17-12
Idea: determine Static schedule Plan schedule s Result: Table of handler Table covers a p OS starts handle Major cycle desig	e run times in advance. is non-reactive (not reacting to external event). to that preemption not necessary (maybe not possible). start times. priod of time called a <i>major cycle</i> . rs based on table. gned to repeat.		Express periods as integers. (Possibly clock ticks.) Set table length to least-common multiple (LCM) of periods. ¹ Put handler start times in table so that deadlines met. If LCM of periods too large then, if possible, adjust periods or use dynamic scheduling. ¹ The LCM of a set of integers is the smallest integer that is a positive multiple of all the integers. For example, LCM{10, 15, 20} = $6 \times 10 + 4 \times 15 + 3 \times 20$.	-

17-13	Deadlines and Static Scheduling	17-13	17-14	Static Scheduling Example	17-14
17-13 I N F e F II T 	Deadlines and Static Scheduling Deadline in a dynamically scheduled system based on event time. No explicit event time in static system. For problems in class use an assumed event time: went e with period $t_b(e)$ will occur with period $t_b(e) \dots$ \ldots but with whatever phase needed to ensure that deadlines met. For example, let $t_b(A) = 10 \mu$ s. t might occur at $t = 0, 10 \mu$ s, 20μ s, \ldots or $t = 1, 11 \mu$ s, 21μ s, \ldots \ldots or any other phase that would allow deadlines to be met. This timing assumption is not applied to dynamically scheduled systems \ldots \ldots because they <i>can</i> react to external events.	17-13	17-14 Compute a st LCM = 30, s Table:	Static Scheduling Exampletatic schedule for the following system:EventHandlerEventNameRun TimePeriod \overline{A} $4\mu s$ $10\mu s$ \overline{B} $3\mu s$ $15\mu s$ \overline{C} $5\mu s$ $30\mu s$ to table covers $30 \mu s$.TimeAction $\overline{0\mu s}$ Start A $4\mu s$ Start B $10\mu s$ Start A $17\mu s$ Start B ($2\mu s$ early) $20\mu s$ Start A $24\mu s$ Start C	17-14
17-13	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1909 from kli17.	17-13	Note that the 17-14	e second occurrence of B is 2 μ s early. EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from isli17.	17-14
F L A	Static Scheduling Using a Cyclic Executive Possible disadvantages of static scheduling as described above: arge number of timer expirations (specified in table). A cyclic executive reduces the number of timer interrupts by running handlers in bunches called <i>bins</i> .	1/-15	Bin: Code (r These perfor Handlers wit First handler Notation: Bin 1: $\mathcal{B}_1 = ($. Indicates that Bin 2: $\mathcal{B}_2 = ($. Indicates that	Cyclic Executive Bins naybe handler or daemon) that calls event-specific handlers. m function of handlers in earlier problems. hin a bin run one after the other (without pause). T in bin runs when bin starts, second when first ends, etc. A, B, C, A). handlers for A, B, C , and A (again) will run when \mathcal{B}_1 runs. A, D, A, C). handlers for A, D, A (again), and C will run when \mathcal{B}_2 runs.	1/-16
17-15	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-15	17-16	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from Isli17.	17-16

17-1	7 Cyclic Executive Bins	17-17	17-18	Cyclic Executive Design	17-18
Bin Timing			No special method. Use guidelines below.		
Bin starts at fixed interval. (Based on OS timer).			Minor cycle:		
Execution of bin called <i>minor cycle</i> .			Typically of fixed size (which must divide major cycle).		
Time between bin starts also called <i>minor cycle</i> .			Longer than longest handler. (May need to divide handlers into parts.)		
	Different bins may run in consecutive minor cycles, some may repeat.		Try to set minor cycle to greatest common divisor of longer periods.		
	For example: $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_1, \mathcal{B}_3$ (note that \mathcal{B}_1 used twice.)		If major cycle chosen correctly, minor cycle multiple of shorter periods.		
	Time period in which sequence repeats called a major cycle (as with static schedule).				
17-1 ⁻	7 EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from bill17.	17-17	17-18	EE 4770 Lecture Transparency. Formatted 9:40, 14 April 1999 from kli17.	17-18
17-1	9 Cyclic Executive Tradeoffs	17-19	17-20	Cyclic Executive Example	17-20
	Adventores of Cuslic Executive		Cot up a ou	lie ensuiting for the nume remindie sugerts described in table below.	
	Excise to accure timing then dynamic scheduling				
	 Easier to assure timing than dynamic scieduling. Fourier intermunts on other scheduler actions needed than ardinary static schedul. 			Event Handler Event Name Run Time Period	
	• rewer interrupts of other scheduler actions needed than ordinary static schedul- ing.			$\begin{array}{ccc} \mathrm{A} & 4\mu\mathrm{s} & 10\mu\mathrm{s} \\ \mathrm{B} & 3\mu\mathrm{s} & 15\mu\mathrm{s} \end{array}$	
	Disadvantages of Cyclic Executive			C $5\mu s$ $30\mu s$	
	Not useful when periods vary widely. (<i>E.g.</i> , 1μ s, $3 \mathrm{ms.}$).		Set major c	ycle to $30 \mu s$, set minor cycle to $15 \mu s$.	
Not reactive, must assume phase of periodic events.			$\mathcal{B}_1 = (A, B,$	A) and $\mathcal{B}_2 = (B, A, C)$.	
	Difficult to achieve exact start times for all handlers. (<i>E.g.</i> , when bin has more than one handler.)		The timing Event $A: t =$	above would meet deadlines if the events occurred in the following way: $-3 \mu s, 7 \mu s, 17 \mu s, 27 \mu s, \dots$	
	Cannot be used with non-periodic events.		Event $B: t =$	$0\mu\mathrm{s}, 15\mu\mathrm{s}, 30\mu\mathrm{s}, \ldots$	
	Cannot easily be used with long running handlers.		Event C : $t =$	$22\mu\mathrm{s}, 52\mu\mathrm{s}, \ldots$	
17-19	9 EE 4770 Lecture Transparency, Formatived 940 14 April 1909 from bill17	17-19	17-20	EE 4770 Lecture Transparency, Formatted 9:40, 14 April 1909 from kil17	17-20