
1 1

Homework 5 Solution

Problem 1: Design a scheduling algorithm which ensures that over a
relatively long interval CPU time is divided evenly between all
tasks. For example, consider a system running this algorithm
with two tasks, one I/O bound, the other compute bound. The
run time of the tasks is long compared to the interval. The I/O-
bound task and the CPU-intensive task would each get 50% of
the CPU time (unless the time to complete I/O requests is very
large).

Key Points:

� When a task goes into the Wait state it normally forfeits the
remainder of its quantum.

� The scheduling algorithm should allow the task to \catch up."

Solution:

Use two priority levels:

1: Normal tasks.

2: Tasks which have fallen behind.

Within each priority level, use FCFS scheduling.

OS is task-preemptive.

The following actions are taken when a priority-1 task must wait:

� The remaining time in its quantum is stored, use symbol trq for
this time.

� The time at which it went into the wait state is stored, tw.

� Its priority is set to 2 and it is placed in the wait list.

1 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 1



2 2

Priority 1 tasks used a �xed quantum and are scheduled normally.

Tasks at priority 2 will be allowed to run for a total of trq, after
which they will move back to priority 1.

When a task is moved back to the priority-1 ready list, its arrival
time is set to tw, not the current time.

By setting the arrival time to this value the task does not loose its
place in line.

Priority 2 task X is run with a quantum of trq(X), for all X at
priority 2.

If it uses up its quantum it is moved back to priority 1.

Otherwise trq(X) is replaced with trq(X)�tx, where tx is the amount
of time it ran.

2 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 2



3 3

Problem 2: Find timing constraints for the code in the self-balancing
washing machine example. Briey justify each constraint. Show
how the code might be scheduled, including interrupt handlers
and tasks. Show a situation in which there might be timing
di�culties and explain how they might be resolved.

Solution steps:

� Estimate run times.

� Estimate timing constraints.

� Find scheduling.

Run Times

CDT, th = 1�s. Time is small because it only has to increment a
variable and, sometimes, read a wobble.

SPEED, th = 5�s. Must compute speed and update a table. Check-
ing for table-length overow and other conditions results in the
longer run time.

SPRAY, th = 50�s. In addition to adjusting actuators must set next
timer interrupt. It might have to do some computation to de-
termine when the next timer interrupt should be.

wobble, run time 500ms.

3 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 3



4 4

Timing Constraints

Suppose maximum spin speed is 1200RPM.

Suppose CDT has 1024 marks.

Then minimum period for CDT is 49�s.

Reasonable assumption: response must occur before next event.

Constraint:

Normal:Mark �! CtrInc < 49�s,

where eventMark occurs when a mark passes under mark readers
in the CDT,

and response CtrInc occurs when CDT �nishes.

Similarly, for speed:

Normal:Speed �! Cntr < 49�s,

where event Speed occurs at the timer interrupt and,

response Cntr occurs after SPEED has run.

Suppose buckets had a target that was 30� wide and jets could turn
on or o� no more than 10� late.

Then response time constrain is the time for the tub to turn 10� at
maximum speed.

Normal:JetOnI �! JetOn < 1:39ms,

Normal:JetO�I �! JetO� < 1:39ms,

where event JetOnI and JetO�I are the respective timer inter-
rupts,

and response JetOn and JetO� occur when the SPRAY handler

4 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 4



5 5

�nishes.

Scheduling

The SPRAY handler's run time could result in CDT or SPEED missing
their deadlines so:

Strong priority 2: CDT and SPEED.

Strong priority 1: SPRAY.

The wobble task will be scheduled as a d�mon task since it is not
associated with any hard deadlines.

5 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 5



6 6

Problem 3: Find the actual run time, latency, and response time for
the event types described in the table below.

Event Strong Weak Handler Occurrence
Name Pri. Pri. Run Time
A 3 3 10�s Periodic, tb(A) = 54�s.
B 3 2 4�s Twice, any time between occurrences of A.
C 3 1 12�s Once, any time between occurrences of A.
D 2 1 50�s Periodic, tb(D) = 23ms.
E 1 1 10�s One shot.

Event B will not recur until after a previous occurrence of event B
has been responded to. That is, there cannot be an occurrence
of B after an occurrence of B and before the response for this
occurrence of B.

Events A and C occur the same number of times, B occurs twice as
many times as A and C.

Solution:

Strong Priority Level 3:

Latency of A: tl(A) = th(C) = 12�s.

Latency of B: tl(B) = th(A) + th(C) = 22�s.

Event B can occur twice just before and just after A so:

Latency of C: tl(C) = th(A) + 4th(B) = 26�s.

Actual run times: ta(A) = th(A), ta(B) = th(B), and ta(C) =
th(C).

Since there is no preemption at the highest strong priority level
response times are sum of latency and actual run times:

tr(A) = tl(A) + ta(A) = 22�s, tr(B) = tl(B) + ta(B) = 26�s,
and tr(C) = tl(C) + ta(C) = 38�s.

6 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 6



7 7

Strong Priority Level 2:

Unlucky situation for D: C, two Bs, an A, 2 Bs, and a C.

Latency of D: tl(D) = th(A) + 4th(B) + 2th(C) = 50�s.

A similar unlucky situation:

Actual duration ta(D) = 3th(A) + 8th(B) + 4th(C) + th(D) = 160�s.

In this case, response time tr(D) = ta(D).

Strong Priority Level 1:

Latency of E is response time of D, tl(E) = 160�s.

Actual duration is ta(E) = tr(D) + th(E) = 170�s.

Response time is tr(E) = ta(E) = 170�s.

7 EE 4770 Lecture Transparency. Formatted 15:15, 26 April 1996 from hw.95.05.sol. 7


