Name _

Alias

Real Time Systems EE 4770 Midterm Examination* 18 March 1994, 8:40-9:30

Problem 1 _____ (34 pts)

- Problem 2 _____ (33 pts)
- Problem 3 _____ (33 pts)

Exam Total (100 pts)

Good Luck!

The wording of the questions on this exam may have been modified so that they are consistant with terminology used this semester.

Problem 1: Design a circuit and software to measure temperature using the components described below. (This will be similar to homework 2, problem 1.) The circuit should convert temperature from -20 to 10 °C to a floating point number, tee, the temperature in degrees Celsius. (34 pts)

- The circuit should use two RTDs which should be connected in a Wheatstone bridge for maximum sensitivity. Use the linear RTD model with $R_0 = 100 \Omega$, the resistance of the RTD at 0 °C, and $\alpha_1 = 0.00392 \frac{1}{\circ C}$. Use two-wire RTDs.
- Use an 8-bit analog to digital converter (ADC), which converts its input, v_i , to the integer $\lfloor \frac{255}{5} \frac{v_i}{V} \rfloor$. Make full use of the ADC's dynamic range.
- Show the power supply voltage to the bridge, amplifier gain, and the values of any other supplies and components.
- Give an expression for v_i , the input to the analog to digital converter.
- Taking into account the non-linear response of the bridge, describe an algorithm which converts the ADC output into tee.

Problem 2: Design a circuit which converts irradiance to voltage so that the circuit's output is $v_o = 3H \frac{\text{cm}^2}{\text{mW}} \text{V}$. Use a photomultiplier with sensitivity $K_s = 1 \frac{\mu \text{A} \text{cm}^2}{\text{W}}$ and dynode gain $A_s = 2$. Do not use a resistor larger than $1 \text{ M}\Omega$. Include a protection diode in your circuit. (33 pts)

Problem 3: Answer each of the problems below. Be brief; correct but lengthy answers will not receive full credit.

(a) What is the difference between repeatability error and stability error? (11 pts)

(b) The irradiance at a point 53 cm from a light source is 7.48 $\frac{mW}{cm^2}$. Assuming the source radiates uniformly in all directions, find the radiant intensity at a point 47 cm from the source. (11 pts)

(c) Explain why an RTD and why a thermistor change resistance with temperature. (11 pts)