Idea: describe (specify) direct network using graph.
Network \Leftrightarrow Graph
Links \Leftrightarrow Edges
Nodes \Leftrightarrow Vertices
Graph Representation
Uses two sets:

- Set of vertices, V.
- Set of edges E.

Usual notation, $G=(V, E)$:

- G is the name of the graph.
- V is the set of vertices.
- E is the set of edges.

Consider $G=(V, E)$.
Let $u \in V$ and $v \in V$.
The following two statements are equivalent:

- There is an edge between u and v.
- $(u, v) \in E$.

For any graph $(V, E): E \subseteq V \times V$.

For graphs used in class:
V is a set of consecutive integers starting at 0.
E.g., $V=\{0,1,2\}$.

Integers sometimes expressed in radix- k form.
Let i, k, and a be positive integers.
Then notation $i_{(a)}$ indicates digit a in i 's radix- k representation.
Digit 0 is the least significant.
Digit notation can be juxtaposed: $i=i_{(n-1)} i_{(n-2)} \cdots i_{(0)}$, where n is the number of radix- k digits in i.

Examples:
Let $i=1234_{10}=4 d 2_{16}=3412_{7}$.
For $k=16, i=i_{(2)} i_{(1)} i_{(0)}=4 d 2$ and so $i_{(2)}=4, i_{(1)}=\mathrm{d}, i_{(0)}=2$.
For $k=7, i=i_{(3)} i_{(2)} i_{(1)} i_{(0)}=3412$ and so $i_{(3)}=3, i_{(2)}=4, i_{(1)}=1, i_{(0)}=2$.

Other Useful Notation

$$
\begin{aligned}
& \langle x\rangle \equiv\{0,1, \ldots, x-1\} . \\
& E . g .,\langle 4\rangle \equiv\{0,1,2,3\}
\end{aligned}
$$

Popular direct network families.
n-D mesh is generalization of a 2-D mesh.
k-ary n-cube is n - D mesh with wraparound connections.
Properties

- All members are easily routed.
- Members exhibit medium to high diameter.
- Suitable for many parallel algorithms.

Plan

- Special Cases Described
- Families Described

Nodes arranged in a line.
Graph description of N-node linear network:

$$
\begin{aligned}
& V=\langle N\rangle=\{0,1, \ldots, N-1\} \\
& E=\{(i, i+1) \mid i \in\langle N-1\rangle\}
\end{aligned}
$$

Properties

Degree, $\delta=2$.
Routing: increment (or decrement) vertex of current position until at destination.
Distance, $d_{u, v}=|u-v|$.
Diameter, $D=N-1$.
Average Distance:

$$
\bar{d}=\frac{2}{N(N-1)} \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} j-i=\frac{N+1}{3}
$$

Bisection width, 1.

Usefulness

Diameter and average distance too large for general use.
Bisection width too small for general use.
Might be useful for special-purpose applications.
Useful for simple classroom examples.

Generalization of linear network to two dimensions.
Graph description of k^{2}-node 2-dimensional mesh:

$$
\begin{aligned}
V & =\left\langle k^{2}\right\rangle=\left\{0,1, \ldots, k^{2}-1\right\} \\
E & =\left\{(i, i+1) \mid i \in\left\langle k^{2}\right\rangle,(i \bmod k)<k-1\right\} \cup\left\{(i, i+k) \mid i \in\left\langle k^{2}-k\right\rangle\right\}
\end{aligned}
$$

Degree, $\delta=4$.
Routing:

- Treat vertex as 2-digit, radix- k number.
- Increment (or decrement) least-significant digit of vertex of current position until equal to least-significant digit of destination vertex.
- Increment (or decrement) most-significant digit of vertex of current position until equal to most-significant digit of destination vertex.

Distance, $d_{u, v}=\left|u_{(0)}-v_{(0)}\right|+\left|u_{(1)}-v_{(1)}\right|$.
Diameter, $D=2(k-1)$.
Average Distance:

$$
\bar{d}=\frac{2 k(k+1)(k-1)}{3\left(k^{2}-1\right)}
$$

Bisection width, k.

Usefulness

Diameter large, but acceptable.
May be easy to build.
Used in general-purpose computers.
Well suited to some algorithms.
Works poorly with other algorithms.

Graph description:

$$
\begin{aligned}
& V=\left\langle k^{n}\right\rangle \\
& E=\left\{\left(u, u+k^{i}\right) \mid i \in\langle n\rangle, u \in V, u_{(i)}<k-1\right\} .
\end{aligned}
$$

Mesh Routing:

- Treat vertex as n-digit, radix- k number.
- Choose a digit.
- Increment (or decrement) this digit of the vertex of the current position until equal to the corresponding digit of destination vertex.
- Repeat until all digits are chosen.

Degree:

$$
\delta= \begin{cases}2 n, & \text { if } k>2 \\ n, & \text { if } k=2\end{cases}
$$

Distance, $d_{u, v}=\sum_{i=0}^{n-1}\left|u_{(i)}-v_{(i)}\right|$.
Diameter, $D=n(k-1)$.
Average Distance:

$$
\bar{d}=\frac{n}{3} \frac{(k-1)(k+1) k^{n-1}}{\left(k^{n}-1\right)} \approx \frac{n}{3}\left(k-\frac{1}{k}\right) .
$$

Bisection width, k^{n-1}.

Usefulness For $k=2$.
Short (logarithmic) average distance and diameter.
Easy to route.
Large degree (bad).

Goal: determine tradeoffs when k and n varied.
Method:

- Fix some measures.
- Vary k and n.
- Observe effect on other measures.

Case 1: Fix N.
Observe effect on average distance, latency, bisection width, and cost.
Case 2: Fix N and Bisection Width
Observe effect on average distance, latency, and cost.
Case 3: Fix N and Cost
Observe effect on average distance, latency, and bisection width.

Cost (For These Comparisons).
Count number of links, include width:

$$
\mathrm{C}=\frac{1}{2} N \delta w
$$

Number of Nodes
$N=k^{n}$ by definition.
$\Rightarrow n=\log _{k} N$
$\Rightarrow k=N^{\frac{1}{n}}$
Latency (For These Comparisons)

$$
L=\bar{d}+\frac{M}{w}-1
$$

Graph description of k^{n}-node k-ary n-cube:

$$
\begin{aligned}
V= & \left\langle k^{n}\right\rangle . \\
E= & \left\{\left(u, u+k^{i}\right) \mid i \in\langle n\rangle, u \in V, u_{(i)}<k-1\right\} \cup \\
& \left\{\left(u, u-(k-1) k^{i}\right) \mid i \in\langle n\rangle, u \in V, u_{(i)}=k-1\right\} .
\end{aligned}
$$

k-ary n-cube Routing (similar to mesh):

- Treat vertex as n-digit, radix- k number.
- Choose a digit.
- Increment (or decrement) this digit of the vertex of the current position until equal to the corresponding digit of destination vertex.
- Repeat until all digits are chosen.

Degree (same as mesh):

$$
\delta= \begin{cases}2 n, & \text { if } k>2 \\ n, & \text { if } k=2\end{cases}
$$

Distance, $d_{u, v}=\sum_{i=0}^{n-1} \min \left\{\left|u_{(i)}-v_{(i)}\right|, k-\left|u_{(i)}-v_{(i)}\right|\right\}$.
Diameter, $D=n\left\lfloor\frac{k}{2}\right\rfloor$.
Average Distance, $\bar{d}=\left\{\begin{array}{ll}\frac{n}{4} \frac{k^{n+1}}{k^{n}-1} & \text { if } k \text { even } \\ \frac{n}{4} \frac{k^{n+1}+k^{n-1}}{k^{n}-1} & \text { if } k \text { odd }\end{array}\right.$.

$$
\approx \frac{n k}{4}
$$

Bisection width, $\left\{\begin{array}{ll}k^{n-1}, & \text { if } k=2 ; \\ 2 k^{n-1}, & \text { if } k>2\end{array}\right.$.

Motivation: does the hypercube have a minimum diameter?
Can use Moore bound to answer this.
Method Outline:

- Fix degree and diameter of minimum-diameter network.
(Degree of δ, diameter of d).
- Find maximum number of nodes that any such network could have.
- Solve for diameter.

Derivation

Call some node the center of the network.
Let $N^{\prime}(i)$ denote the number of nodes at distance i from center.
Then:

$$
\begin{aligned}
& N^{\prime}(0)=1 \\
& N^{\prime}(1) \leq \delta \\
& N^{\prime}(2) \leq \delta(\delta-1)=N^{\prime}(1)(\delta-1) \\
& N^{\prime}(3) \leq \delta(\delta-1)^{2}=N^{\prime}(2)(\delta-1) \\
& N^{\prime}(i) \leq N^{\prime}(i-1)(\delta-1)=\delta(\delta-1)^{(i-1)} \text { for } i>1
\end{aligned}
$$

Let N denote the total number of nodes in a network of diameter d and degree δ.

$$
\begin{aligned}
N & =\sum_{i=0}^{d} N^{\prime}(i) \\
& \leq N^{\prime}(0)+N^{\prime}(1)+\sum_{i=2}^{d} N^{\prime}(i) \\
& \leq 1+\delta+\delta \sum_{i=2}^{d}(\delta-1)^{i-1} \\
& \leq 1+\delta+\delta \sum_{j=1}^{d-1}(\delta-1)^{j} \\
& \leq 1+\delta+\delta\left(\frac{(\delta-1)^{d}-(\delta-1)}{(\delta-1)-1}\right) \\
& \leq \frac{\delta(\delta-1)^{d}-2}{\delta-2}
\end{aligned}
$$

Solving for d yields:

$$
d \geq \log _{(\delta-2)}\left(\frac{N(\delta-2)+2}{\delta}\right)
$$

If $\delta \gg 1$:

$$
d \approx \log _{\delta} N
$$

Note that this is much better than the KNC family.
But do such networks exist?

Used to describe edges in several graphs.
Idea: Rotate digits in a number (with an end-around shift).
Two definitions will be given:

Shuffle Function (for Integers)
Let $u \in\langle m k\rangle$ where m and k are positive integers.
The shuffle function $\sigma_{m, k} \mid\langle m k\rangle \rightarrow\langle m k\rangle$ is given by:

$$
\sigma_{m, k}(u) \equiv m u+\left\lfloor\frac{u}{k}\right\rfloor \quad(\bmod m k)
$$

Examples:

$$
\begin{aligned}
& \sigma_{2,4}(1)=2 \\
& \sigma_{2,4}(0)=0 \\
& \sigma_{2,4}(5)=3
\end{aligned}
$$

Shift Functions (for Sequences)

Let $u_{(n-1)} u_{(n-2)} \ldots u_{(0)}$ be any sequence of symbols, where $u_{(i)} \in S$, and \mathcal{S} be the set of all possible sequences.

Then the left-shift function $\sigma_{1} \mid \mathcal{S} \rightarrow \mathcal{S}$ is given by:

$$
\sigma_{1}\left(u_{(n-1)} u_{(n-2)} \ldots u_{(0)}\right)=u_{(n-2)} u_{(n-3)} \ldots u_{(0)} u_{(n-1)} .
$$

Examples:

$$
\begin{aligned}
& \sigma_{1}(a b c)=b c a \\
& \sigma_{1}(1101)=1011
\end{aligned}
$$

The right-shift function $\sigma_{\mathrm{r}} \mid \mathcal{S} \rightarrow \mathcal{S}$ is given by:

$$
\sigma_{\mathrm{r}}\left(u_{(n-1)} u_{(n-2)} \ldots u_{(0)}\right)=u_{(0)} u_{(n-1)} \ldots u_{(2)} u_{(1)}
$$

Examples:

$$
\begin{aligned}
& \sigma_{\mathrm{r}}(a b c)=c a b \\
& \sigma_{\mathrm{r}}(1101)=1110
\end{aligned}
$$

The shuffle function is a special case of the shift functions.

- Given any set of symbols S,
- any positive integer n,
- and any set of sequences $\mathcal{S}=S \times S \times \cdots \times S$ (n times),
- and any $S \in \mathcal{S}$,
there exist a corresponding:
- set of digits $\langle | S\rangle$,
- set of integers $\left.\left.\langle | S\right|^{n}\right\rangle$,
- a mapping $\left.\left.\mathcal{S} \rightarrow\langle | S\right|^{n}\right\rangle$
such that for any $S_{1} \in \mathcal{S}$ if $\sigma_{1}\left(S_{1}\right)=S_{2}$ and $\sigma_{\mathrm{r}}\left(S_{1}\right)=S_{3}$ then $\sigma_{|S|,|S|^{n-1}}\left(s_{1}\right)=s_{2}$ and $\sigma_{|S|^{n-1},|S|}\left(s_{1}\right)=s_{3}$
where s_{1}, s_{2}, and s_{3} are the integers corresponding to S_{1}, S_{2}, and S_{3}, respectively.

In other words, any sequence of symbols could be viewed as a sequence of digits.

The Exchange Function

Used to describe edges in several graphs.
Idea: change least-significant-digit of a number.
Exchange function for Integers
Let $u \in\langle m k\rangle$ and $i \in\langle m\rangle$, where m and k are positive integers.
Then the exchange function $\chi \mid\langle m k\rangle,\langle m\rangle \rightarrow\langle m k\rangle$ is given by

$$
\chi_{m}(u, i)=m\left\lfloor\frac{u}{m}\right\rfloor+i
$$

Examples:

$$
\begin{aligned}
& \chi_{2}(5,0)=4 \\
& \chi_{3}(13,2)=14
\end{aligned}
$$

Exchange function for Sequences
Let $u_{(n-1)} u_{(n-2)} \ldots u_{(0)}$ be any sequence of symbols, where $u_{(i)} \in S$, and \mathcal{S} be the set of all possible sequences.

Then the exchange function $\chi \mid \mathcal{S}, S \rightarrow \mathcal{S}$ is given by:

$$
\chi\left(u_{(n-1)} u_{(n-2)} \ldots u_{(0)}, x\right)=u_{(n-1)} u_{(n-2)} \ldots x, \text { where } x \in S
$$

Examples:

$$
\begin{aligned}
& \chi(a b c, d)=a b d \\
& \chi(1011,0)=1010 \\
& \chi(\bigcirc \boldsymbol{\&} \diamond, \boldsymbol{巾})=\bigcirc \boldsymbol{q} \uparrow
\end{aligned}
$$

Let m and n be positive integers.
The m, n shuffle-exchange, (V, E) graph is given by:

$$
\begin{aligned}
& V=\left\langle m^{n}\right\rangle \\
& E=\left\{\left(u, \sigma_{m, m^{n-1}}(u)\right) \mid u \in V\right\} \cup\left\{\left(u, \chi_{m}(u, i)\right) \mid u \in V, i \in\langle m\rangle\right\} .
\end{aligned}
$$

Degree: $\delta=m+1$.
Distance: $d_{u, v} \leq 2 n-1$.
The exact distance cannot be expressed in compact form.
Diameter: $D=2 n-1$.
For example, $d_{0, m^{n}-1}=2 n-1$.
Average distance: not known, probably close to diameter.
Bisection width: for $m=2: B W=\Theta\left(2^{n-1}\right)$.

Non-minimal Routing of Shuffle Exchange Graph
For request $\left(u_{(n-1)} u_{(n-2)} \cdots u_{(0)}, v_{(n-1)} v_{(n-2)} \cdots v_{(0)}\right)$:

- Step 0:
"Replace" least-significant-digit of source with MSD of destination.
$\left(u_{(n-1)} u_{(n-2)} \cdots u_{(0)}, u_{(n-1)} u_{(n-2)} \cdots v_{(n-1)}\right)$.
- Step $i \in\{1,2, \ldots, n-1\}$:

Left shift the current node number.

$$
\begin{aligned}
& \left(u_{(n-i)} u_{(n-i-1)} \cdots u_{(1)} v_{(n-1)} \cdots v_{(n-i)}\right. \\
& \left.\quad u_{(n-i-1)} u_{(n-i-2)} \cdots u_{(1)} v_{(n-1)} \cdots u_{(n-i)}\right)
\end{aligned}
$$

"Replace" digit $n-i$ of source with digit $n-i-1$ of destination.
Take edge

$$
\begin{aligned}
& \left(u_{(n-i-1)} u_{(n-i-2)} \cdots u_{(1)} v_{(n-1)} \cdots u_{(n-i)}\right. \\
& \left.\quad u_{(n-i-1)} u_{(n-i-2)} \cdots u_{(1)} v_{(n-1)} \cdots v_{(n-i-1)}\right)
\end{aligned}
$$

Also called Good graph.
Let m and n be positive integers.
The m, n de Bruijn Graph, (V, E) is given by:

$$
\begin{aligned}
& V=\left\langle m^{n}\right\rangle \\
& E=\left\{\left(u, \chi_{m}\left(\sigma_{m, m^{n-1}}(u), i\right)\right) \mid u \in V i \in\langle m\rangle\right\} .
\end{aligned}
$$

Degree: $\delta=2 m$.
Distance: $d_{u, v} \leq n$.
The exact distance cannot be expressed in a compact form.
Diameter: $D=n$.
For example, $d_{0, m^{n}-1}=n$.
Average distance:

$$
\bar{d} \geq \begin{cases}n-3-\frac{9}{8}, & \text { if } m=2 \\ n-1-\frac{8}{9}, & \text { if } m=3 \\ n-1-\frac{25}{72}, & \text { if } m=4 \\ n-\frac{2(m+1)^{2}}{m(m-1)^{2}}, & \text { if } m>4\end{cases}
$$

Non-minimal Routing of the de Bruijn Graph
For request $\left(u_{(n-1)} u_{(n-2)} \cdots u_{(0)}, v_{(n-1)} v_{(n-2)} \cdots v_{(0)}\right)$:

- Step $i \in\{0,1, \ldots, n-1\}$:

Left-shift the current node number, then exchange LSD.

$$
\begin{aligned}
& \left(u_{(n-i-1)} u_{(n-i-2)} \cdots u_{(0)} v_{(n-1)} \cdots v_{(n-i)}\right. \\
& \left.\quad u_{(n-i-2)} u_{(n-i-3)} \cdots u_{(0)} v_{(n-1)} \cdots v_{(n-i-1)}\right)
\end{aligned}
$$

