03-1 03-1

Direct Network Graph Representation

Idea: describe (specify) direct network using graph.
Network < Graph
Links < Edges

Nodes < Vertices

Graph Representation
Uses two sets:
e Set of vertices, V.

e Set of edges FE.

Usual notation, G = (V, E):
e (G is the name of the graph.
e I/ is the set of vertices.

e F is the set of edges.
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Consider G = (V, FE).
LetueVandveV.
The following two statements are equivalent:

e There is an edge between u and v.

o (u,v) € E.

For any graph (V,E): ECV x V.
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Notation

For graphs used in class:
V' is a set of consecutive integers starting at 0.
E.g,V ={0,1,2}.
Integers sometimes expressed in radix-k form.
Let ¢, k, and a be positive integers.
Then notation i(,) indicates digit a in ¢’s radix-k representation.
Digit 0 is the least significant.
Digit notation can be juxtaposed: i = i(,—1)i(n—2) * * * 4(0)
where n is the number of radix-k digits in 1.
Examples:
Let i = 123419 = 4d216 = 34127.
For k = 16, i = i(2)i(1)i(0) = 4d2 and s0 i(9) = 4, i(1) = d, i(9) = 2.

For k£ = 7, 1= i(3)i(2)i(1)i(0) = 3412 and so i(g) = 3, i(g) = 4, ’i(l) = 1, i(O) = 2.
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Other Useful Notation
(x) =40,1,..., 2 — 1}.

E.g., (4) ={0,1,2,3}.
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k-ary n-cube (KNC) /n-D Mesh Network Families

Popular direct network families.
n-D mesh is generalization of a 2-D mesh.

k-ary n-cube is n-D mesh with wraparound connections.

Properties
e All members are easily routed.
e Members exhibit medium to high diameter.

e Suitable for many parallel algorithms.

Plan
e Special Cases Described

e Families Described
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Linear Network

Nodes arranged in a line.
Graph description of N-node linear network:
V=(N)={0,1,...,N — 1}

Properties
E={(,i+1)]ie(N-1)}

Degree, 6 = 2.

Routing: increment (or decrement) vertex of current position until at destination.
Distance, dy, , = |u —v|.

Diameter, D = N — 1.

Average Distance:

N—-2 N-1

SY
||
.
||

1=0 j=1+1
Bisection width, 1.
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Usefulness
Diameter and average distance too large for general use.
Bisection width too small for general use.
Might be useful for special-purpose applications.

Useful for simple classroom examples.
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03-8 Two-Dimensional Mesh Network 03-8

Generalization of linear network to two dimensions.

Graph description of k?-node 2-dimensional mesh:

V=(k*)={0,1,...,k — 1}

E={(i,i+1)]ie(k*), (imodk)<k—1} U {(i,i+k)|ie(k*—k)}
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Properties

Degree, 0 = 4.
Routing:
e Treat vertex as 2-digit, radix-k£ number.

e Increment (or decrement) least-significant digit of vertex of current position until
equal to least-significant digit of destination vertex.

e Increment (or decrement) most-significant digit of vertex of current position until
equal to most-significant digit of destination vertex.

Distance, dy , = ‘u(o) — fu(o)} + }u(l) — V(1)|-
Diameter, D = 2(k — 1).

Average Distance:

2k (k+1)(k—1)

d= 3 (k2 — 1)

Bisection width, k.
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Usefulness
Diameter large, but acceptable.
May be easy to build.
Used in general-purpose computers.
Well suited to some algorithms.

Works poorly with other algorithms.
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03-11 . . . . . 03-11
n-D Mesh: Generalization of previous two networks to n dimensions.

Graph description:
V = (k™).

E={(u,u+k)|ie(n),uveV, u;, <k—1}
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Mesh Routing:
e Treat vertex as n-digit, radix-£ number.
e Choose a digit.

e Increment (or decrement) this digit of the vertex of the current position until
equal to the corresponding digit of destination vertex.

e Repeat until all digits are chosen.
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Mesh Properties

Degree:

s [2n, ifE>2
ln, ifk=2.

n—1
Distance, dy, , = Z |’LL(Z') — U(i)‘.
=0

Diameter, D = n(k — 1).
Average Distance:

n(k—1)(k+1E"" n 1
3 (k" —1) ”§(k_E>'

a:

Bisection width, k™ 1.
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Usefulness For k = 2.

Short (logarithmic) average distance and diameter.
Fasy to route.

Large degree (bad).
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03-15 Choice of k£ and n for Mesh

Goal: determine tradeoffs when k and n varied.
Method:

e [z some measures.

e Vary k and n.

e Observe effect on other measures.

Case 1: Fix N.

Observe effect on average distance, latency, bisection width, and cost.

Case 2: Fix N and Bisection Width

Observe effect on average distance, latency, and cost.

Case 3: Fix N and Cost

Observe effect on average distance, latency, and bisection width.
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Equations for All Cases

Cost (For These Comparisons).

Count number of links, include width:

1

Number of Nodes
N = k™ by definition.
= n = log, N
— k=Nn=
Latency (For These Comparisons)

M
L=d+——1
w
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k-ary n-cube: Mesh with Wraparound Connections
Graph description of k™-node k-ary n-cube:
V = (k™).

E={(u,u+k’)|ien), ueV, uy<k—1}U
{(wu—(k—1)k") i€ n), ueV, uy =k—1}.
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k-ary n-cube Routing (similar to mesh):
e Treat vertex as n-digit, radix-£ number.
e Choose a digit.

e Increment (or decrement) this digit of the vertex of the current position until
equal to the corresponding digit of destination vertex.

e Repeat until all digits are chosen.
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03-19 k-ary n-cube Properties

Degree (same as mesh):
s [om, k>3
ln, ifk=2.

n—1
Distance, dy , = Z min{ |’LL(Z’) — U(i)‘ , k— IU(i) — U(i)‘ }
=0

k
Diameter, D =n ng ,
( kn—l—l
- %k” 1 if £ even
Average Distance, d = <
n kn‘l‘l + kn—l
— if k£ odd
N | Hro
_ ok
T4

k-l it k=2

Bisection width, {an_17 Fhs9o
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03-20 Moore Bound

Motivation: does the hypercube have a minimum diameter?

Can use Moore bound to answer this.

Method Outline:
e F'ix degree and diameter of minimum-diameter network.

(Degree of 9, diameter of d).

e Find maximum number of nodes that any such network could have.

e Solve for diameter.
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Derivation

Call some node the center of the network.

Let N'(i) denote the number of nodes at distance i from center.

Then:

<86 —1)=N(1)(6—1)
<§(5—1)2 = N'(2)(5 — 1)

N'(i) < N'(@—1)(—1)=06(6 —1)0=Y for 4 > 1.
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03-22 03-22

Let N denote the total number of nodes in a network of diameter d and degree .

d
N =) N'(i)
1=0
d
< N'(0) + N'(1) + > N'(4)

d
<1+6+6) (6-1)"
1=2
d—1
<1+6+0) (6-1)

J=1

< 1o (UL

d
_ 80 —1)7 -2
= 52

Solving for d yields:

NG —2)+2
leOg(a_Q)( ( 5 ) >
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If o6 > 1:
d~ 10g5 N.
Note that this is much better than the KNC family.

But do such networks exist?
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03-24

Shuffle and Shift Functions

Used to describe edges in several graphs.

Idea: Rotate digits in a number (with an end-around shift).

Two definitions will be given:

Shuffle Function (for Integers)

Let u € (mk) where m and k are positive integers.

The shuffle function o,, 1 | (mk) — (mk) is given by:

u

Om k(U) = mu + {—J (mod mk).

Examples:
02.4(1) =2
024(0) =0
02.4(5) =3

03-24

k
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03-25 03-25

Shift Functions (for Sequences)
Let u(p—1) Un—2) - .- u() be any sequence of symbols, where u;) € S,
and S be the set of all possible sequences.
Then the left-shift function o) | S — S is given by:
01 (U(n—1) Un—2) -+ U(0)) = Un—2) Un—3) -+ U(0) Un—1)-
Examples:
o1(abc) = bea

o1(1101) = 1011
The right-shift function o, | § — S is given by:

01 (Un—1) Un—2) -+ U(0)) = U(0) Un—1) -+ U(2) U(1)-
Examples:
or(abc) = cab

0,(1101) = 1110
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Relationship Between Shuffle and Shift Functions

The shuffle function is a special case of the shift functions.
e Given any set of symbols S,
e any positive integer n,
e and any set of sequences S =5 x § x --- x S (n times),
e and any S € S,
there exist a corresponding:
e set of digits (|S]),
e set of integers (|.S|™),
e a mapping S — (|S|™)

such that for any S; € S if 01(S1) = S2 and 0,(S1) = S3 then o|g| |g»-1(51) = s2 and
O|sn-1,s1(51) = 53

where s1, so, and s3 are the integers corresponding to S1, S, and Ss, respectively.

In other words, any sequence of symbols could be viewed as a sequence of digits.
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The Exchange Function

Used to describe edges in several graphs.

Idea: change least-significant-digit of a number.

Exchange function for Integers
Let u € (mk) and i € (m), where m and k are positive integers.

Then the exchange function x | (mk), (m) — (mk) is given by

; u ;
Xm(u, ) =m {—J + 4
m
Examples:
X2<5, 0) = 4
X3(13, 2) =14
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Exchange function for Sequences
Let u(p—1) Un—2) - .- u() be any sequence of symbols, where u;) € S,
and S be the set of all possible sequences.
Then the exchange function x | §,S — S is given by:
X(U(n—1) U(n—2) -+ U0)sT) = U(n_1) U(n—2) --- T, Where x € S.
Examples:
x(abc,d) = abd
x(1011,0) = 1010

X(O®O, B) = Ol
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Shuffle-Exchange Graph
Let m and n be positive integers.
The m,n shuffle-exchange, (V, E') graph is given by:
V= (m")

E={(w0ommn—1(uw) |ueViU{(uxm(ui))uveV, ic(m)}.
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Shuffle-Exchange Graph Characteristics:
Degree: 6 =m + 1.

Distance: d, , < 2n — 1.

The exact distance cannot be expressed in compact form.

Diameter: D = 2n — 1.

For example, do mn—1 = 2n — 1.

Average distance: not known, probably close to diameter.

Bisection width: for m = 2: BW = ©(2"1).
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03-31
Non-minimal Routing of Shuffle Exchange Graph

For request (w(n—1)U(n—2) - %(0), V(n-1)V(n—2) " " V(0)):

e Step O:

“Replace” least-significant-digit of source with MSD of destination.

(U(n—1)U(n—2) "= " U(©0), U(n—1)U(n—2)" " V(n—1))-
e Stepi e {1,2,....,n—1}:

Left shift the current node number.

(u(n—i)u(n—i—l) UV (n—1) T U(in—i),

U(n—i—1)U(n—i—2) """ UQ)V(n-1) "~ 'U(n—z'))

“Replace” digit n — ¢ of source with digit n — ¢ — 1 of destination.

Take edge

(u(n—i—l)u(n—i—Z) U V(n—1) T U(n—i)

Un—i—1)U(n—i—2) " U1)V(n-1) " 'U(n—i—l))
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03-32 3 03-32
de Bruijn Graph

Also called Good graph.

Let m and n be positive integers.

The m,n de Bruijn Graph, (V, F) is given by:
V= (m")

E = {(U, X’m<0m,m”_1(u>7i>) | ueVie <m> }
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de Bruijn Graph Characteristics:
Degree: 6 = 2m.
Distance: d, , < n.
The exact distance cannot be expressed in a compact form.
Diameter: D = n.
For example, do mn—_1 = n.

Average distance:

(n—3-2, ifm=2;
B n—l—%, if m = 3;
d > <

n—1-2, ifm=4;

|7 - ;((TZ:?;’ if m > 4.

03'33 EE 7725 Lecture Transparency. Formatted 11:56, 8 June 2001 from Isli03. 03'33



03-34 03-34

Non-minimal Routing of the de Bruijn Graph
For request (w(n—1)U(n—2) - %(0), V(n-1)V(n—2) " " V(0)):
e Stepi € {0,1,...,n— 1}:

Left-shift the current node number, then exchange LSD.

(u(n—i—l)u(n—i—2) o U0)Y(n—1) " T U(n—i);

Un—i—2)U(n—i—-3) """ U0)V(n-1) " "U(n—z‘—l))
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