
03-1 03-1Direct Network Graph Representation

Idea: describe (specify) direct network using graph.

Network ⇔ Graph

Links ⇔ Edges

Nodes ⇔ Vertices

Graph Representation

Uses two sets:

• Set of vertices, V .

• Set of edges E.

Usual notation, G = (V, E):

• G is the name of the graph.

• V is the set of vertices.

• E is the set of edges.
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03-2 03-2

Consider G = (V,E).

Let u ∈ V and v ∈ V .

The following two statements are equivalent:

• There is an edge between u and v.

• (u, v) ∈ E.

For any graph (V, E): E ⊆ V × V .
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03-3 03-3Notation

For graphs used in class:

V is a set of consecutive integers starting at 0.

E.g., V = { 0, 1, 2 }.
Integers sometimes expressed in radix-k form.

Let i, k, and a be positive integers.

Then notation i(a) indicates digit a in i’s radix-k representation.

Digit 0 is the least significant.

Digit notation can be juxtaposed: i = i(n−1)i(n−2) · · · i(0),
where n is the number of radix-k digits in i.

Examples:

Let i = 123410 = 4d216 = 34127.

For k = 16, i = i(2)i(1)i(0) = 4d2 and so i(2) = 4, i(1) = d, i(0) = 2.

For k = 7, i = i(3)i(2)i(1)i(0) = 3412 and so i(3) = 3, i(2) = 4, i(1) = 1, i(0) = 2.
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03-4 03-4

Other Useful Notation

〈x〉 ≡ {0, 1, . . . , x − 1}.
E.g., 〈4〉 ≡ {0, 1, 2, 3}.
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03-5 03-5
k-ary n-cube (KNC) /n-D Mesh Network Families

Popular direct network families.

n-D mesh is generalization of a 2-D mesh.

k-ary n-cube is n-D mesh with wraparound connections.

Properties

• All members are easily routed.

• Members exhibit medium to high diameter.

• Suitable for many parallel algorithms.

Plan

• Special Cases Described

• Families Described
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03-6 03-6
Linear Network

Nodes arranged in a line.

Graph description of N -node linear network:

V = 〈N〉 = {0, 1, . . . , N − 1}

E = { (i, i + 1) | i ∈ 〈N − 1〉 }
Properties

Degree, δ = 2.

Routing: increment (or decrement) vertex of current position until at destination.

Distance, du,v = |u − v|.

Diameter, D = N − 1.

Average Distance:

d =
2

N(N − 1)

N−2∑
i=0

N−1∑
j=i+1

j − i =
N + 1

3
.

Bisection width, 1.
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03-7 03-7

Usefulness

Diameter and average distance too large for general use.

Bisection width too small for general use.

Might be useful for special-purpose applications.

Useful for simple classroom examples.
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03-8 03-8Two-Dimensional Mesh Network

Generalization of linear network to two dimensions.

Graph description of k2-node 2-dimensional mesh:

V =
〈
k2

〉
= {0, 1, . . . , k2 − 1}

E ={ (i, i + 1) | i ∈ 〈
k2

〉
, (i mod k) < k − 1 } ∪ { (i, i + k) | i ∈ 〈

k2 − k
〉 }
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03-9 03-9Properties

Degree, δ = 4.

Routing:

• Treat vertex as 2-digit, radix-k number.

• Increment (or decrement) least-significant digit of vertex of current position until
equal to least-significant digit of destination vertex.

• Increment (or decrement) most-significant digit of vertex of current position until
equal to most-significant digit of destination vertex.

Distance, du,v =
∣∣u(0) − v(0)

∣∣ +
∣∣u(1) − v(1)

∣∣.
Diameter, D = 2(k − 1).

Average Distance:

d =
2 k (k + 1) (k − 1)

3 (k2 − 1)
.

Bisection width, k.
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03-10 03-10

Usefulness

Diameter large, but acceptable.

May be easy to build.

Used in general-purpose computers.

Well suited to some algorithms.

Works poorly with other algorithms.

03-10 EE 7725 Lecture Transparency. Formatted 11:56, 8 June 2001 from lsli03. 03-10



03-11 03-11
n-D Mesh: Generalization of previous two networks to n dimensions.

Graph description:

V = 〈kn〉.
E = { (u, u + ki) | i ∈ 〈n〉 , u ∈ V, u(i) < k − 1 }.
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03-12 03-12

Mesh Routing:

• Treat vertex as n-digit, radix-k number.

• Choose a digit.

• Increment (or decrement) this digit of the vertex of the current position until
equal to the corresponding digit of destination vertex.

• Repeat until all digits are chosen.
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03-13 03-13Mesh Properties

Degree:

δ =
{

2n, if k > 2;
n, if k = 2.

Distance, du,v =
n−1∑
i=0

∣∣u(i) − v(i)

∣∣.
Diameter, D = n(k − 1).

Average Distance:

d =
n

3
(k − 1)(k + 1)kn−1

(kn − 1)
≈ n

3

(
k − 1

k

)
.

Bisection width, kn−1.
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03-14 03-14

Usefulness For k = 2.

Short (logarithmic) average distance and diameter.

Easy to route.

Large degree (bad).
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03-15 03-15Choice of k and n for Mesh

Goal: determine tradeoffs when k and n varied.

Method:

• Fix some measures.

• Vary k and n.

• Observe effect on other measures.

Case 1: Fix N .

Observe effect on average distance, latency, bisection width, and cost.

Case 2: Fix N and Bisection Width

Observe effect on average distance, latency, and cost.

Case 3: Fix N and Cost

Observe effect on average distance, latency, and bisection width.
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03-16 03-16Equations for All Cases

Cost (For These Comparisons).

Count number of links, include width:

C =
1
2
Nδw.

Number of Nodes

N = kn by definition.

⇒ n = logk N

⇒ k = N
1
n

Latency (For These Comparisons)

L = d +
M

w
− 1
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03-17 03-17
k-ary n-cube: Mesh with Wraparound Connections

Graph description of kn-node k-ary n-cube:

V = 〈kn〉.
E ={ (u, u + ki) | i ∈ 〈n〉 , u ∈ V, u(i) < k − 1 } ∪

{ (u, u − (k − 1)ki) | i ∈ 〈n〉 , u ∈ V, u(i) = k − 1 }.
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03-18 03-18

k-ary n-cube Routing (similar to mesh):

• Treat vertex as n-digit, radix-k number.

• Choose a digit.

• Increment (or decrement) this digit of the vertex of the current position until
equal to the corresponding digit of destination vertex.

• Repeat until all digits are chosen.
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03-19 03-19
k-ary n-cube Properties

Degree (same as mesh):

δ =
{

2n, if k > 2;
n, if k = 2.

Distance, du,v =
n−1∑
i=0

min
{ ∣∣u(i) − v(i)

∣∣ , k − ∣∣u(i) − v(i)

∣∣ }
.

Diameter, D = n

⌊
k

2

⌋
.

Average Distance, d =




n

4
kn+1

kn − 1
if k even

n

4
kn+1 + kn−1

kn − 1
if k odd

.

≈ nk

4

Bisection width,
{

kn−1, if k = 2;
2kn−1, if k > 2 .
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03-20 03-20Moore Bound

Motivation: does the hypercube have a minimum diameter?

Can use Moore bound to answer this.

Method Outline:

• Fix degree and diameter of minimum-diameter network.

(Degree of δ, diameter of d).

• Find maximum number of nodes that any such network could have.

• Solve for diameter.
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03-21 03-21

Derivation

Call some node the center of the network.

Let N ′(i) denote the number of nodes at distance i from center.

Then:

N ′(0) = 1

N ′(1) ≤ δ

N ′(2) ≤ δ(δ − 1) = N ′(1)(δ − 1)

N ′(3) ≤ δ(δ − 1)2 = N ′(2)(δ − 1)

N ′(i) ≤ N ′(i − 1)(δ − 1) = δ(δ − 1)(i−1) for i > 1.
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03-22 03-22

Let N denote the total number of nodes in a network of diameter d and degree δ.

N =
d∑

i=0

N ′(i)

≤ N ′(0) + N ′(1) +
d∑

i=2

N ′(i)

≤ 1 + δ + δ
d∑

i=2

(δ − 1)i−1

≤ 1 + δ + δ
d−1∑
j=1

(δ − 1)j

≤ 1 + δ + δ

(
(δ − 1)d − (δ − 1)

(δ − 1) − 1

)

≤ δ(δ − 1)d − 2
δ − 2

Solving for d yields:

d ≥ log(δ−2)

(
N(δ − 2) + 2

δ

)
.
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03-23 03-23

If δ À 1:

d ≈ logδ N .

Note that this is much better than the KNC family.

But do such networks exist?

03-23 EE 7725 Lecture Transparency. Formatted 11:56, 8 June 2001 from lsli03. 03-23



03-24 03-24
Shuffle and Shift Functions

Used to describe edges in several graphs.

Idea: Rotate digits in a number (with an end-around shift).

Two definitions will be given:

Shuffle Function (for Integers)

Let u ∈ 〈mk〉 where m and k are positive integers.

The shuffle function σm,k | 〈mk〉 → 〈mk〉 is given by:

σm,k(u) ≡ mu +
⌊u

k

⌋
(mod mk).

Examples:

σ2,4(1) = 2

σ2,4(0) = 0

σ2,4(5) = 3
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03-25 03-25

Shift Functions (for Sequences)

Let u(n−1) u(n−2) . . . u(0) be any sequence of symbols, where u(i) ∈ S,

and S be the set of all possible sequences.

Then the left-shift function σl | S → S is given by:

σl

(
u(n−1) u(n−2) . . . u(0)

)
= u(n−2) u(n−3) . . . u(0) u(n−1).

Examples:

σl(abc) = bca

σl(1101) = 1011

The right-shift function σr | S → S is given by:

σr

(
u(n−1) u(n−2) . . . u(0)

)
= u(0) u(n−1) . . . u(2) u(1).

Examples:

σr(abc) = cab

σr(1101) = 1110
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03-26 03-26Relationship Between Shuffle and Shift Functions

The shuffle function is a special case of the shift functions.

• Given any set of symbols S,

• any positive integer n,

• and any set of sequences S = S × S × · · · × S (n times),

• and any S ∈ S,

there exist a corresponding:

• set of digits 〈|S|〉,
• set of integers 〈|S|n〉,
• a mapping S → 〈|S|n〉

such that for any S1 ∈ S if σl(S1) = S2 and σr(S1) = S3 then σ|S|,|S|n−1(s1) = s2 and
σ|S|n−1,|S|(s1) = s3

where s1, s2, and s3 are the integers corresponding to S1, S2, and S3, respectively.

In other words, any sequence of symbols could be viewed as a sequence of digits.
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03-27 03-27The Exchange Function

Used to describe edges in several graphs.

Idea: change least-significant-digit of a number.

Exchange function for Integers

Let u ∈ 〈mk〉 and i ∈ 〈m〉, where m and k are positive integers.

Then the exchange function χ | 〈mk〉 , 〈m〉 → 〈mk〉 is given by

χm(u, i) = m
⌊ u

m

⌋
+ i

Examples:

χ2(5, 0) = 4

χ3(13, 2) = 14
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03-28 03-28

Exchange function for Sequences

Let u(n−1) u(n−2) . . . u(0) be any sequence of symbols, where u(i) ∈ S,

and S be the set of all possible sequences.

Then the exchange function χ | S, S → S is given by:

χ(u(n−1) u(n−2) . . . u(0), x) = u(n−1) u(n−2) . . . x, where x ∈ S.

Examples:

χ(abc, d) = abd

χ(1011, 0) = 1010

χ(♥♣♦,♠) = ♥♣♠
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03-29 03-29Shuffle-Exchange Graph

Let m and n be positive integers.

The m,n shuffle-exchange, (V,E) graph is given by:

V = 〈mn〉
E = { (u, σm,mn−1(u)) | u ∈ V } ∪ { (u, χm(u, i)) | u ∈ V, i ∈ 〈m〉 }.
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03-30 03-30Shuffle-Exchange Graph Characteristics:

Degree: δ = m + 1.

Distance: du,v ≤ 2n − 1.

The exact distance cannot be expressed in compact form.

Diameter: D = 2n − 1.

For example, d0,mn−1 = 2n − 1.

Average distance: not known, probably close to diameter.

Bisection width: for m = 2: BW = Θ(2n−1).
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03-31 03-31

Non-minimal Routing of Shuffle Exchange Graph

For request (u(n−1)u(n−2) · · ·u(0), v(n−1)v(n−2) · · · v(0)):

• Step 0:

“Replace” least-significant-digit of source with MSD of destination.

(u(n−1)u(n−2) · · ·u(0), u(n−1)u(n−2) · · · v(n−1)).

• Step i ∈ {1, 2, . . . , n − 1}:
Left shift the current node number.

(u(n−i)u(n−i−1) · · ·u(1)v(n−1) · · · v(n−i),

u(n−i−1)u(n−i−2) · · ·u(1)v(n−1) · · ·u(n−i))

“Replace” digit n − i of source with digit n − i − 1 of destination.

Take edge

(u(n−i−1)u(n−i−2) · · ·u(1)v(n−1) · · ·u(n−i),

u(n−i−1)u(n−i−2) · · ·u(1)v(n−1) · · · v(n−i−1))

03-31 EE 7725 Lecture Transparency. Formatted 11:56, 8 June 2001 from lsli03. 03-31



03-32 03-32
de Bruijn Graph

Also called Good graph.

Let m and n be positive integers.

The m,n de Bruijn Graph, (V,E) is given by:

V = 〈mn〉
E = { (u, χm(σm,mn−1(u), i)) | u ∈ V i ∈ 〈m〉 }.
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03-33 03-33de Bruijn Graph Characteristics:

Degree: δ = 2m.

Distance: du,v ≤ n.

The exact distance cannot be expressed in a compact form.

Diameter: D = n.

For example, d0,mn−1 = n.

Average distance:

d ≥




n − 3 − 9
8 , if m = 2;

n − 1 − 8
9 , if m = 3;

n − 1 − 25
72 , if m = 4;

n − 2(m+1)2

m(m−1)2 , if m > 4.
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03-34 03-34

Non-minimal Routing of the de Bruijn Graph

For request (u(n−1)u(n−2) · · ·u(0), v(n−1)v(n−2) · · · v(0)):

• Step i ∈ {0, 1, . . . , n − 1}:
Left-shift the current node number, then exchange LSD.

(u(n−i−1)u(n−i−2) · · ·u(0)v(n−1) · · · v(n−i),

u(n−i−2)u(n−i−3) · · ·u(0)v(n−1) · · · v(n−i−1))

03-34 EE 7725 Lecture Transparency. Formatted 11:56, 8 June 2001 from lsli03. 03-34


