Multistage-Network Overview

Major Types

- Banyan and Banyan-Like.
- \bullet Clos and Beneš
- Batcher Sorters
- Miscellaneous

Includes omega network.

Provide efficient interconnections.

Easy to route.

Cannot support all connection assignments.

Most commonly used MIN type.

 \bullet Clos and Beneš

Cost roughly twice as much as Banyans.

Difficult to route.

Can support all permutation connection assignments.

Used in a small number of research computers.

• Batcher Sorters

Cost roughly $\log N$ times more than N-input Banyan.

Easy to route.

Can support all permutation connection assignments.

- Miscellaneous
 - Fanout/Concentrate Family
 - Composite Networks
 - Of non-practical-theoretical and practical interest.

A MIN consists of cells and links.

Cells arranged in stages.

Links connect cells in adjacent stages.

Multistage-Network Terminology

The following numbering will be used:

Stages, consecutively from 0 (input) to s - 1 or n - 1.

Cells within a stage, consecutively from 0.

Cell inputs and outputs, consecutively from 0 for each cell.

Cell inputs and outputs also given stage terminal numbers.

Terminal numbers consecutively from 0, for all cells.

Link Patterns

A *link pattern* is an arrangement of links that could connect adjacent stages in a MIN. More Formally:

Let T_1 and T_2 be equal-cardinality sets of terminal numbers.

A link pattern is a bijection from T_1 to T_2 .

Example:

Let $T_1 = \{0, 1, 2\}$ and $T_2 = \{0, 1, 2\}$.

Let $\pi(0) = 1$, $\pi(1) = 0$, and $\pi(2) = 2$.

Mapping π is a bijection from T_1 to T_2 , and therefore a link pattern.

Let $\pi'(0) = 1$, $\pi'(1) = 1$, and $\pi'(2) = 2$.

Mapping π' is not a bijection, and so not a link pattern.

To route request (u, v) in an *n*-stage 2×2 network ...

... at stage *i* take cell output $v_{(n-1-i)}$, for $i \in \langle n \rangle$.

Goal: Specify a family of networks which

- consists of stages of square cells
- with shuffles between stages chosen so that:

outputs from an individual cell in one stage connect to consecutive cells in the next stage.

Each stage can have its own cell size.

These networks called a *flat square MIN* in class.

Notation: $(s, \vec{m}, \vec{k}, l, r)$, where

s is the number of stages;

 $\vec{m} = (m_0, m_1, \dots, m_s), m_i$ indicates the cell size in stage $i \in \langle s \rangle$;

$$\vec{k} = \left(\frac{N}{m_0}, \frac{N}{m_1}, \dots, \frac{N}{m_s}\right),$$

where $N = \prod_{i=0}^{s-1} m_i$, the number of inputs;

$$\frac{N}{m_i}$$
 indicates the number of cells in stage *i*;

and the link patterns are as follows (on next slide):

• Stage 0:

If l = T then $\langle I, u \rangle$ connects to $\langle 0, u \rangle$ for $u \in N$.

That is, there is no shuffle in the first stage.

If l = S then $\langle I, u \rangle$ connects to $\langle 0, \sigma_{m_0,k_0}(u) \rangle$ for $u \in N$.

That is, there is an m_0, k_0 shuffle in the first stage.

• Stage $i \in \{1, 2, \dots, s - 1\}$:

Stage terminal $\langle i - 1, u \rangle$ connects to $\langle i, \sigma_{m_i,k_i}(u) \rangle$.

That is, there is an m_i, k_i shuffle in all but the first stage.

• Following last stage:

If r = T stage terminal $\langle s - 1, u \rangle$ connects to output $\langle O, u \rangle$.

That is, there is no shuffle following the last stage.

If r = S stage terminal $\langle s - 1, u \rangle$ connects to output $\langle O, \sigma_{m_s,k_s} u \rangle$.

That is, there is a shuffle following the last stage.

(The only purpose of m_s and k_s is to specify this shuffle.)

A generalized omega network is a type of flat square min:

$$(s, (m_0, m_1, \dots, m_s), (\frac{N}{m_0}, \frac{N}{m_1}, \dots, \frac{N}{m_s}), S, T),$$
 where

 $N = \prod_{i=0}^{s-1} m_i$, the number of inputs.

Path-length, d = s.

Mixed Radix Numbers (used in routing)

Let $\vec{r} = (r_{n-1}, r_{n-2}, \dots, r_0)$ be a sequence of integers > 1.

To convert an integer x to radix \vec{r} :

LSD is
$$x_0 = x \mod r_0$$
.
Second digit is $x_1 = \left\lfloor \frac{x}{r_0} \right\rfloor \mod r_1$.
Digit $x_i = \left\lfloor \frac{x}{\prod_{j=0}^{i-1} r_j} \right\rfloor \mod r_i$.

Examples:

$$\vec{r} = (2, 3, 4)$$
: $3 = (0, 0, 3), 4 = (0, 1, 0), 20 = (1, 2, 0).$
 $\vec{r} = (5, 4, 2)$: $3 = (0, 1, 1), 4 = (0, 2, 0), 20 = (2, 2, 0).$

To convert $x_{(n-1)}x_{(n-2)}\cdots x_{(0)}$ in radix \vec{r} to decimal:

$$x = x_0 + \sum_{i=1}^{n-1} x_i \prod_{l=0}^{i-1} r_l.$$

04-14

To route request (u, v):

- Convert u and v to radix \vec{r} numbers, where $r_i = m_{n-1-i}$.
- At stage *i* take cell output v_{n-1-i} .

To convert the terminal numbers in each stage to decimal:

In stage j use radix \vec{r}_j where

$$r_{j,i} = m_{n+j-i \bmod n}.$$

Then
$$x = x_0 + \sum_{i=1}^{n-1} x_i \prod_{l=0}^{i-1} r_{j,l}$$
.

Consists of stages of cells connected by shuffles.

It's not an omega network (though it does look like one).

Described by (m, k), where m > 1 and $k \ge 1$.

Such a network has:

- N = mk inputs and outputs and
- $s = \lceil \log_m N \rceil$ stages.

Each stage consists of

- an $\sigma_{m,k}$ shuffle followed by
- k cells of size $m \times m$.

Important Difference

Uses integer shuffle function, not symbol shuffle function.

Significance: structure isn't related to radix-m link numbers.¹ Routing more complex.

 $^{^1\,}$ Nor any mixed-radix form, whether or not the links are numbered differently.

Unlike real omega, some requests have more than one path.

Will compute routing tags, denoted t_p , where p is a tag number.

Routing tag used as a destination in omega. (Or, in an omega network, the destination *is* the routing tag.)

To route request (i, j) in an (m, k) modified omega network:

Let:
$$N = mk$$
, $s = \lceil \log_m N \rceil$, and $M = N - m^{s-1}$
 $t_1 = j + mMi$
 $t_p = t_1 + (p-1)M$, valid if $t_p < m^s$.

04-18

Modified Omega Network Example

Network defined by m = 2, k = 9.

Then N = mk = 18 and $s = \lceil \log_2 18 \rceil = 5$.

Constant used in routing, $M = N - m^{s-1} = 18 - 16 = 2$.

Modified Omega Network Example

Route for request (1,3):

 $t_1 = 3 + 1 \times 2 \times 2 = 7 = 00111, t_1$ can always be used.

 $t_2 = 7 + 1 \times 18 = 25 = 11001$ < 32, can be used.

 $t_3 = 7 + 2 \times 18 = 43 \not \leq 32$, can not be used.