
7-1 7-1Recursive Decomposition

A technique used to describe networks.
Analogous to recursion in computer programs.

Need a scalable network description to do this.

Scalable Network Description
A network description with an integer size parameter; . . .
. . . a distinct network is defined for every positive size.

Any kind of network description will do, for example:

Omega: (m, n). (An n-stage network.)

Generalized omega: (m, mn−1). (A 2-stage network.)
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7-2 7-2

To Describe a Network Using Recursive Decomposition

• Start with a scalable network description.

• Mark certain cells as recursive, the rest are atomic.

A cell can be recursive . . .

. . . only if there exists a smaller network with the same number of inputs.

7-2 EE 7725 Lecture Transparency. Formatted 11:57, 8 June 2001 from lsli13. 7-2



7-3 7-3Recursive Decomposition Example, Recursive Omega

Scalable network based on generalized omega:
{

(m,mn−1) if n > 1;
(m) if n = 1.

(Note, (m) is a single m × m crossbar.)

Left network shows single level, right network shows two levels.

Recursive Cell

Atomic Cells

Recursive Cell

Atomic Cells

Recursive Cell

Recursive Cell

Recursive Cell

Recursive Cell

Atomic Cells
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7-4 7-4

The completed network of size n = 4 with (right) and without (left) links straightened.
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7-5 7-5

Introducing Butterfly Networks

Structure of an n-stage m×m-cell butterfly
network:

• Each stage has mn−1 cells.

• Network inputs connect to stage-0 cell
inputs with same number.

• Stage-x cell outputs connect to stage-
(x + 1) cell inputs with a n − x − 1
butterfly, for 0 ≤ x < n − 1.

• Stage-(n − 1) cell outputs connect to like-numbered network outputs.

Routing in butterfly networks:

At stage x request (a, α) uses cell-output α(n−1−x).

Inverse Butterfly Network

An inverse butterfly network is the mirror image of the butterfly.
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7-6 7-6Extended Shuffle Function

The extended shuffle function, σ | Z → Z, is similar to the shuffle function, except
that it can operate on any non-negative integer.

(Notation Z is the set of all non-negative integers.)

Used to shuffle least significant digits of a number.

For example:

σ2,22(11001) = 11010, σ22,2(11001) = 11100

σ2,23(11001) = 10011, σ10,103(12345) = 13452.

Formally: let m, k, and i be positive integers. The extended shuffle function σm,k |
Z → Z is defined as

σm,k(i) = i(H) +
(

m
(
i(L)

)
+

⌊
i(L)

k

⌋
mod mk

)
,

where i(L) = i mod mk and i(H) =
⌊

i

mk

⌋
mk.

The extended shuffle function can also be defined for sequences of symbols.
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7-7 7-7

Introducing Baseline Networks

Structure of an n-stage m×m-cell baseline
network:

• Each stage has mn−1 cells.

• Network inputs connect to stage-0 cell
inputs of the same number.

• Stage-x cell outputs connect to stage-
(x + 1) cell inputs with a mn−x−1,m
extended shuffle, for 0 ≤ x < n − 1.

• Stage-(n − 1) cell outputs connect to network outputs with the same number.

Routing in baseline networks:

At stage x request (a, α) uses cell-output α(n−1−x).
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7-8 7-8Baseline, Butterfly, and Omega Comparison
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Similarity:

Routing from MSD to LSD of
destination number.

Difference:

Not TE to each other.

Significance of Difference

A connection assignment on one
may not be realized by the other.
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7-9 7-9Banyan Network Family

A multistage network is a banyan network if . . .

. . . there exists exactly one path between each input/output pair . . .

. . . and all outputs are reachable.

Banyan Network Examples

Omega, butterfly, inverse omega.

Not Banyan Networks

Modified omega network
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7-10 7-10Delta Network Family

A multistage network is a delta network if

• There is a path between every input/output pair.

• The cell output needed by request (a, α) . . .

. . . is uniquely determined only by . . .

. . . the cell stage . . .

. . . and α.

In other words, the one-and-only routing tag . . .

. . . is determined by the output only.

Delta Network Property

Lemma: All delta networks are banyan networks.

Proof: directly from the definition . . .

. . . by definition, deltas have paths between all inputs and outputs . . .

. . . “unique” cell output equivalent to unique path.
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7-11 7-11

Delta Network Output Names

Since the paths from all inputs to a particular output are all identical . . .

. . . the path can be used to name the output.

In an omega network the path (cell outputs) form the digits of the output’s radix-m
representation.
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7-12 7-12

A Non-Delta Network

A modified omega network is not a delta network because . . .

. . . for requests with multiple routing tags . . .

. . . any of several cell outputs could be used.

Delta Network Examples

The following are delta networks: omega, inverse omega, butterfly, inverse butterfly.

The network below is not a delta network, but is a banyan network:
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7-13 7-13

Definition: The part of the routing tag used to reach a cell is called the path descriptor.

Theorem 1: The path descriptors for all requests passing through a cell in a delta network
are identical.

Proof: (By contradiction.)

Consider requests, (a, α) and (b, β).

Suppose these pass through the same cell, u.

Suppose they have different path descriptors.

Construct a request that starts at a, passes through u and goes to β.

If it’s impossible to construct such a request, the network is not a delta network.

If it is possible to construct such a request there are two different routing tags to
β, so the network is not a delta network.
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Recursive Decomposability of Delta Networks

Theorem 2: All scalable delta networks are recursively decomposable.

Proof outline:

Consider the second stage of cells.

Partition the cells into subsets . . .

. . . based on the output number of cells in the previous stage to which they connect.

All cells in each subset will have the same path descriptor.

Expand the subsets by including cells in the following stages to which they connect.

Since each output can be reached using one tag, the subsets remain disjoint.
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7-15 7-15Bidelta Networks

A network is a bidelta network if it is a delta network and its inverse is a delta network.

The omega, baseline, butterfly, and their inverses are all bidelta networks.

The following is a delta network but not a bidelta network:

Definition: A bidelta network cell’s dual path descriptor is the sequence obtained by
joining its path descriptor with the path descriptor of the corresponding cell in
the network’s inverse.
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7-16 7-16

Theorem 3: The dual path descriptor for a cell in a stage of a bidelta network is unique.

Proof:

Choose two requests, (a, α) and (b, β), so they pass through stage-x cells with the
same dual path descriptor.

Call the stage-x cell that (a, α) passes through u.

a

b

a

b

u

v

l
r

l r

l r

l r

Call the stage-x cell that (b, β) passes through v.

Call the dual path descriptor l r.

Next, consider request (a, β).

The path must pass through u since l is part of the routing tag to β.

Consider the reverse path from β to a.

The routing tag will start with r, since that’s on the path to a.

This leads to cell v, so u and v must be the same cells since these are bidelta networks.
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7-17 7-17Bidelta Network Properties

Theorem 4: All bidelta networks are topologically equivalent.

Proof outline:

Consider network X.

Will map node labels so that network mapped to baseline.

Step 1: Create new labels for each output in X using the routing tags needed to reach
the outputs.

For example, in an omega network

Output 7 in an 4-stage omega is labeled 0 1 1 1.

Output i in an n-stage omega is i(n−1)i(n−2) . . . i(0).

A new output number is created by treating routing tag as an n-digit, mixed radix
number, with the radices determined by the cell size.

The element used for routing in the first stage is used as the most-significant digit.
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7-18 7-18

Step 2: Similarly, create new labels for each input in X using the routing tags needed to
reach the inputs.

Create an input number by treating the routing tag as a mixed radix number.

The element used for routing in the first stage is the least-significant digit.

Label the cells using the dual path descriptor.

The networks can be shown to be identical to the baseline by comparing labels of adjacent
cells.
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