Network is described by its permutation connection assignments. E.g., a crossbar can realize all permutations.

Networks can also be defined in terms of permutation sets.
Mathematical properties of permutations well known.
This knowledge can then be applied to network.

Symbols represent network and cell inputs and outputs.
Symbols will be written as lower-case Roman letters or digits.
For example: a, b, z, 0, 9 .

Permutations represent link patterns, crossbar states, and permutation connection assignments.

Permutations are written as upper case Roman or lower case Greek letters.

For example: A, Z, α, ω.
Mathematically, a permutation is a one-to-one mapping from a set of symbols on to itself.

Double Row Notation for Permutations

First row contains symbols, second row contains image of symbols.

$$
P=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 1 & 2 & 0
\end{array}\right)
$$

In this example, 0 's image is 3 .
The permutation above represents the following: In general,

$$
P=\left(\begin{array}{cccc}
0 & 1 & \ldots & N-1 \\
d_{0} & d_{1} & \ldots & d_{N-1}
\end{array}\right)
$$

where $d_{i} \in\langle N\rangle$ for $i \in\langle N\rangle$ and $d_{i} \neq d_{j}$ if $i \neq j$.

Common questions:
Where does link pattern P connect stage terminal x ?
What is the result of cascading link patterns P and Q ?
These questions are expressed mathematically using the composition operator:
$x P$ for first question, $P Q$ for second.
Composition can be applied to symbols, permutations, and sets of permutations.

Composition of Symbols with Permutations
Definition: The composition of a symbol a with a permutation P : is written $a P$. $a P=b$ if P maps a to b.

That is, $P=\left(\begin{array}{ccccc}0 & 1 & \ldots & a & \ldots \\ d_{0} & d_{1} & \ldots & b & \ldots\end{array}\right)$.

Composition of Permutations with Permutations

Definition: The composition of permutation P with permutation Q :
is written $P Q$;
the result of the operation is a permutation R such that:

$$
\text { for all } a \in\langle N\rangle \quad(a P) Q=a R
$$

Example

$$
\begin{aligned}
& \text { Let } P=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 3 & 2 & 0
\end{array}\right) \text { and } Q=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0
\end{array}\right) . \\
& \text { Then } P Q=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
2 & 0 & 1 & 3
\end{array}\right) \text { and } Q P=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 2 & 3 & 1
\end{array}\right) .
\end{aligned}
$$

Composition is not commutative.
Composition is associative.

Familiar Permutations

The identity permutation of $\langle N\rangle$:

$$
I_{N}=\left(\begin{array}{llll}
0 & 1 & \ldots & N-1 \\
0 & 1 & \ldots & N-1
\end{array}\right)
$$

The m, k shuffle permutation of $\langle m k\rangle$:
for all symbols $a \in\langle N\rangle, a \sigma_{m, k}=b$ if $b \equiv(m a+\lfloor a / k\rfloor) \bmod m k$.
All functions that were used for link patterns are permutations.

Inverse Permutation

Let P be a permutation.
The inverse of permutation P, denoted P^{-1}, \ldots
\ldots is the permutation for which $P P^{-1}=I$ is true \ldots
\ldots where I is the identity permutation.
In words: if P and P^{-1} are represented as link patterns \ldots
\ldots then P^{-1} would be the mirror image of P.
Example:

$$
\text { If } P=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 3 & 2 & 0
\end{array}\right) \text { then } P^{-1}=\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
3 & 0 & 2 & 1
\end{array}\right)
$$

Properties

- Every permutation has exactly one inverse.
- $P P^{-1}=P^{-1} P=I$.

Consider $\Sigma_{2}=\left\{\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$.
This set contains two permutations...
\ldots. in fact, those realizable by a 2×2 crossbar.
Such sets used to represent networks and cells.
Usually denoted using upper case Greek or upper-case calligraphic Roman letters.
$\mathcal{F} \Omega \mathcal{R} \mathcal{E} \mathcal{X} \mathcal{A} М П \Lambda \mathcal{E}$

Each permutation represents a connection assignment that network or cell can realize.

Commonly needed: set of all permutations.
Called the symmetric group.
Denoted Σ_{N}, for permutations over $\langle N\rangle$.
For example:

$$
\begin{aligned}
\Sigma_{3}=\{ & \left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right), \\
& \left.\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0
\end{array}\right)\right\}
\end{aligned}
$$

Denoted Σ_{A}, for permutations over symbols in set A.
For example:

$$
\Sigma_{\{a, b\}}=\left\{\left(\begin{array}{ll}
a & b \\
a & b
\end{array}\right),\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\right\} .
$$

Note, $\Sigma_{N}=\Sigma_{\langle N\rangle}$.

Consider:

Let P denote the permutation representing the link pattern.
Let \mathcal{A} denote the sets of permutation realizable by the cell.
Then $P=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2\end{array}\right)$ and $\mathcal{A}=\left\{\left(\begin{array}{lll}0 & 1 & 2 \\ 2 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right)\right\}$.
Network's permutations obtained by composing P and \mathcal{A} is denoted $P \mathcal{A}$.

The result of composing permutation P with set of permutation \mathcal{A} is defined to be

$$
P \mathcal{A}=\{P A \mid A \in \mathcal{A}\} .
$$

For the Example

$$
P \mathcal{A}=\left\{\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right)\right\} .
$$

Consider:

$$
\begin{aligned}
& \Sigma_{2}=\mathcal{A}=\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} . \\
& \Sigma_{\{1,2\}}=\mathcal{B}=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\right\} .
\end{aligned}
$$

(Note that omitted symbols are mapped to themselves.)
The composition of two permutation sets is defined:

$$
\{A B \mid A \in \mathcal{A}, B \in \mathcal{B}\} .
$$

Example:
Consider $\mathcal{A B}$.

$$
\begin{aligned}
& \mathcal{A}=\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} \\
& \mathcal{B}=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\right\} \\
& \mathcal{A B}=\left\{\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

Let \mathcal{A} be a set of permutations.
Let i be a positive integer.
Then the notation \mathcal{A}^{i} is defined to be

$$
\prod_{j=1}^{i} \mathcal{A}
$$

For example,

$$
\mathcal{A}^{3}=\mathcal{A} \mathcal{A} \mathcal{A} .
$$

Goal: Obtain set of permutations for:
2^{n}-input omega network using 2×2 cells.
Will call the set, $\Omega_{2, n}$.

Cells:
Permutations realizable by cell j in stage i :
$\Sigma_{\{2 j, 2 j+1\}}$.
Cells in a Stage:
Will call permutations realizable by cells in a stage $\mathcal{E}_{2, n}$.

$$
\mathcal{E}_{2, n}=\prod_{j=0}^{2^{n-1}-1} \Sigma_{\{2 j, 2 j+1\}} .
$$

This omits shuffle.

Entire Stage:

Permutations by any stage: $\left(\sigma_{2,2^{n-1}} \mathcal{E}_{2, n}\right)$.
Entire Network:

$$
\Omega_{2, n}=\left(\sigma_{2,2^{n-1}} \mathcal{E}_{2, n}\right)^{n}
$$

