Network is described by its permutation connection assignments.

E.g., a crossbar can realize all permutations.

Networks can also be defined in terms of permutation sets.

Mathematical properties of permutations well known.

This knowledge can then be applied to network.

8-1

Definitions

Symbols represent network and cell inputs and outputs.

Symbols will be written as lower-case Roman letters or digits.

For example: a, b, z, 0, 9.

- Permutations represent link patterns, crossbar states, and permutation connection assignments.
 - Permutations are written as upper case Roman or lower case Greek letters.

For example: A, Z, α , ω .

Mathematically, a permutation is a one-to-one mapping from a set of symbols on to itself.

Double Row Notation for Permutations

First row contains symbols, second row contains image of symbols.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 1 & 2 & 0 \end{pmatrix}$$

In this example, 0's image is 3.

The permutation above represents the following:

In general,

$$P = \begin{pmatrix} 0 & 1 & \dots & N-1 \\ d_0 & d_1 & \dots & d_{N-1} \end{pmatrix},$$

where
$$d_i \in \langle N \rangle$$
 for $i \in \langle N \rangle$ and $d_i \neq d_j$ if $i \neq j$.

Common questions:

Where does link pattern P connect stage terminal x?

What is the result of cascading link patterns P and Q?

These questions are expressed mathematically using the composition operator:

xP for first question, PQ for second.

Composition can be applied to symbols, permutations, and sets of permutations.

Composition of Symbols with Permutations

Definition: The composition of a symbol a with a permutation P:

is written aP.

aP = b if P maps a to b.

That is, $P = \begin{pmatrix} 0 & 1 & \dots & a & \dots \\ d_0 & d_1 & \dots & b & \dots \end{pmatrix}$.

Composition of Permutations with Permutations

Definition: The composition of permutation P with permutation Q:

is written PQ;

the result of the operation is a permutation R such that:

for all $a \in \langle N \rangle$ (aP)Q = aR

Example

Let
$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 2 & 0 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$.
Then $PQ = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \end{pmatrix}$ and $QP = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 2 & 3 & 1 \end{pmatrix}$.

Composition is not commutative.

Composition is associative.

Familiar Permutations

The identity permutation of $\langle N \rangle$:

$$I_N = \begin{pmatrix} 0 & 1 & \dots & N-1 \\ 0 & 1 & \dots & N-1 \end{pmatrix}$$

The m, k shuffle permutation of $\langle mk \rangle$: for all symbols $a \in \langle N \rangle$, $a\sigma_{m,k} = b$ if $b \equiv (ma + \lfloor a/k \rfloor) \mod mk$.

All functions that were used for link patterns are permutations.

Inverse Permutation

Let P be a permutation.

The inverse of permutation P, denoted P^{-1}, \ldots

... is the permutation for which $PP^{-1} = I$ is true ...

 \ldots where I is the identity permutation.

In words: if P and P^{-1} are represented as link patterns ...

... then P^{-1} would be the mirror image of P.

Example:

If
$$P = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 2 & 0 \end{pmatrix}$$
 then $P^{-1} = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 2 & 1 \end{pmatrix}$.

Properties

- Every permutation has exactly one inverse.
- $PP^{-1} = P^{-1}P = I.$

Consider $\Sigma_2 = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$

This set contains two permutations...

...in fact, those realizable by a 2×2 crossbar.

Such sets used to represent networks and cells.

Usually denoted using upper case Greek or upper-case calligraphic Roman letters.

 $\mathcal{F}\Omega\mathcal{R} \mathcal{E}\mathcal{X}\mathcal{A}\mathcal{M}\Pi\Lambda\mathcal{E}$

Each permutation represents a connection assignment that network or cell can realize.

Commonly needed: set of all permutations.

Called the symmetric group.

Denoted Σ_N , for permutations over $\langle N \rangle$.

For example:

$$\Sigma_{3} = \left\{ \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix} \right\}$$

Denoted Σ_A , for permutations over symbols in set A.

For example:

$$\Sigma_{\{a,b\}} = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix}, \begin{pmatrix} a & b \\ b & a \end{pmatrix} \right\}.$$

Note, $\Sigma_N = \Sigma_{\langle N \rangle}$.

Consider:

Let P denote the permutation representing the link pattern.

Let \mathcal{A} denote the sets of permutation realizable by the cell.

Then
$$P = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$$
 and $\mathcal{A} = \left\{ \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \right\}.$

Network's permutations obtained by composing P and \mathcal{A} is denoted $P\mathcal{A}$.

The result of composing permutation P

with set of permutation \mathcal{A} is defined to be

$$P\mathcal{A} = \{ PA \mid A \in \mathcal{A} \}.$$

For the Example

$$P\mathcal{A} = \left\{ \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix} \right\}.$$

Consider:

8-10

(Note that omitted symbols are mapped to themselves.)

The composition of two permutation sets is defined:

 $\{AB|A \in \mathcal{A}, B \in \mathcal{B}\}.$

Example:

Consider \mathcal{AB} .

$$\mathcal{A} = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$
$$\mathcal{AB} = \left\{ \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \right\}$$

Let \mathcal{A} be a set of permutations.

Let i be a positive integer.

Then the notation \mathcal{A}^i is defined to be

$\prod_{j=1}^{i}\mathcal{A}$

For example,

8-11

 $\mathcal{A}^3 = \mathcal{A}\mathcal{A}\mathcal{A}.$

Goal: Obtain set of permutations for:

 2^n -input omega network using 2×2 cells.

Will call the set, $\Omega_{2,n}$.

Cells:

8-12

Permutations realizable by cell j in stage i:

 $\Sigma_{\{2j,2j+1\}}.$

Cells in a Stage:

Will call permutations realizable by cells in a stage $\mathcal{E}_{2,n}$.

$$\mathcal{E}_{2,n} = \prod_{j=0}^{2^{n-1}-1} \Sigma_{\{2j,2j+1\}}.$$

This omits shuffle.

Entire Stage:

Permutations by any stage: $(\sigma_{2,2^{n-1}}\mathcal{E}_{2,n}).$

Entire Network:

 $\Omega_{2,n} = \left(\sigma_{2,2^{n-1}}\mathcal{E}_{2,n}\right)^n.$