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Omega-Network Connection Assignments

A connection assignment that a network can satisfy is an admissible
permutation.

The set of all permutations admissible by an m™-input omega network
is denoted €2y, 5.

The set of all permutations admissible by an m”-input inverse omega
network is denoted Q;ﬁn.

Simple lemma: If P € Q,, ,, then P~! € Q;ﬁn.
The contents of €, ,, is of interest to those:
e writing parallel algorithms and

e designing networks.

Two families of admissible permutations will be studied:
e Shift and

e Bitonic
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Shift Permutations

Used to connect input ¢ to output pi + ¢, where

i,c € (2™) and pmod 2 =1 (p is odd).

9-2

A permutation is a p, ¢ shift permutation of size 2", denoted 5, ., if

for all x € (27)
Spe(xr) =xzp+c (mod 2"),

where ¢ is a nonnegative integer and p is a nonnegative odd
integer.

Examples:
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Examples, illustrated:

NOoO o~ WN-O0O
NOoO o h~,AWN-O0O
NOoO o~ WN-O0
NOoO o~ WN-O0O
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The set of all shift permutations of size 2" is given by

S(Qn) = U {S2x—|—1,c}-

x,c€{00)

Assertion: Any shift permutation can be satisfied by an omega net-
work, that is, S(2") C Qs .

Proof Outline
Consider A = (a,a) € S, for an N = 2™-input omega network.
By definition, a = pa + c.
Consider a second request B = (b,3) € Sp.¢, b # a.

First prove o # 3 for all a,b € (N).

Find the stage terminal needed by requests A and B at cell outputs
in stage i € (n).

Request (a, a) uses
(iy Q(n—2—i)Q(n—3—i) - - - A(0)¥(n—1)¥(n—2) - - - Xn—1—7) ) -

Request (b, 3) uses

(i, bn—2-i)bn—3—1) - - - b0) Btn=1)B(n—2) - - - Brn—1-1) -
Show that: <i, A(n—2—i)A(n—3—13) - - - A(0)X¥(n—1)¥(n—2) - - .a(n_l_i)> 75
(i, bn—2-i)bn—3—i) - - - b©)Brn—1)Bn—2) - - - Bin—1-14))-

for all i € (n), A = (a,a) € Spc, B = (b,8) € Spc, a # D,
p,c € (N).

This proof is simple when p is limited to 1.
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Admissibility Proof for Shift Permutations, p = 1
Since a # b (by definition) they differ in > 1 digit.
Let = + 1 be the lowest-numbered differing digit.
That is, a(0:2) = b(0:2) and A(z41) 7 b(z1)-
Lemma: O(z+1) # ﬁ(x-l—l)-
Proof:
Consider addition of &« = a + ¢ and 3 = b + ¢ by bits.
Let 7(z41) be carry to be added to digit = + 1.
Since ¢ and digits up to x in A and B are identical. ..
...the carry r(;11) must also be identical.
Bitwise addition:
A(zp+1) = A(z+1) D C(z+1) D T(z+1)
and Bz4+1) = bzt1) @ Cat1) O T(@+1)-

Since only difference is a(z41) 7# b(z+1), then a(z41) # Bz + 1).

Back to admissibility proof:
In stage 1,...
... either a(o.n—2-4) # bOin—2-i) O A(n_1-in—1) # Bn-1—in—1)- - -

...either way there is no contention.
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Admissibility Proof for Shift Permutations, p Odd
Similar to proof above:
Let x 4+ 1 be the lowest-numbered differing digit:
a(0:x) = b(O:a:) and A(z+1) = b(x+1)-
Lemma: a(z41) 7 Bat1)-
Proof:

Need to compare (ap)z+1) and (bp)(z41).-

r+1
Clp (x+1) (Zp z)a(as z+1 ) + R:r:+1 mod 2a

where R, is the carry.

Splitting the sum yields:

rx+1
(ap)(@+1) = P0)4(z+1) + (Z p(z)a(wz—l—l)) + Ryy1 mod 2,

z=1

Since a(o.q) = b(o.¢) expressions for (ap)(z+1) and (bp) 41y differ ...

. only in p(o)a(mﬂ) and p(O)b(m—i—l) cee
. (noting that since p is odd, py = 1). ..
. and so (ap)(xH) 75 (bp)(x+1). ..

. and therefore a ;1) # Bat1)-
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Remainder of proof is the same:
In stage 1,. ..

... either A(0:n—2—1) # b(O:n—2—z’) O (p—1—i:n—1) # B(n—l—i:n—l)- -

...either way there is no contention.
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Bitonic Permutations

A sequence of numbers is bitonic if the magnitude of the numbers first
increases then decreases, or if the magnitude of the numbers first
decreases then increases.

Examples:
1,1,2,5,5,4,0
1,2,1
5,3,0,8

Not bitonic: 1,2,0,3 and 1,2,3.,4.

The definition of a bitonic permutation will have a slight difference:
The sequence is a sequence of integers,
the integers are a permutation of (m™), and

the sequence when shifted is bitonic.
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A permutation for which the sequence P(c), P(c+ 1), P(c+2),...,
P(c+m™ — 1) is bitonic is called a bitonic permutation, where
P is a permutation of (m)", c is an integer, and arithmetic is
modulo m".

Examples:

p_ (0123456 7\, (01234567
1™ \2 35 76 410/) 2 \5 76410 2 3
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
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Theorem: Let symbol B(m™) denote the set of all bitonic permuta-
tions of (m™). Then B(m"™) C Q.

Proof Introduction:
Let P € B and (a,a) € P and (b,3) € P, (a #b).
Link used by (a,«) at cell output in stage x is. ..
 Un—g—2)0(n—p-3) " AO)Un-1)V(n-2) """ Un—a—1)-
Similarly (b, 3) uses b(n—z—2)b(n—2—3) * * - b0)Bn=1)Bn-2) * - * Brn—a—1)-
To prove (a,«) and (b, 3) don’t share a link. ..
.. .sufficient to show that. ..
codl a1y Qn—z—1) = Bn—1) " Bn—z—1)

...then a2 2)a(m—z-3) " a@0) 7 O(n—z-2)b(n—2—3) " b(0)-

Proof Introduction In words:

Call A(n—z—2)A(n—z—3) " Q(0) and b(n_gj_g) b(n—x—3) ce b(o) the (input)
LSDs.

Call a(p—1) - @(n—g—1) and Bp_1) - Bn—z—1) the (output) MSDs.

Need to prove: if the MSDs of two requests match,. ..

...the LSDs must be different.

For rest of proof consider only requests with

A1) """ Un—z—-1) = Bn-1) " Bn—z-1)
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Proof Observation:
Because P is a permutation. ..
.. .for each choice of a(p_1) - Q_z—1)---

€T —

.. .there are m™~*~1! requests in P.

If the LSDs of the inputs of those m™~ %=1 requests are distinct. ..
(€9 A(n—z-2)A(n—z-3) " A0) F C(n—z—2)0(n—z—3) " " 4(0))
...then (a,a) and (b, 3) won’t share a link.
So, that’s what will be proven.

Proof Outline:
Show that for a given a1y Qr—g—1) ---

...the possible input numbers form up to 3 runs of consecutive num-
bers.

(By property of bitonic sequences.)

T —

Show that gaps between runs contain a multiple of m™~*~! inputs.

(Show directly for ap—1) - Qn—z—1) = m*t1 — 2, proceed with
induction on a,—1) - Qn_z—1).)

n—xr—1

Show a bijection between m consecutive integers. . .

...and the inputs.
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: (0 1 2 3 4 5 6 7
For example ComslderP—(1 3 7 6 5 4 9 O) for €25 3.

In stage 0 let a9y = 1.

Then inputs form one run: 2,3,4,5 and there is no gap.
In stage 0 let a9y = 0.

Then inputs form two runs: 0,1 and 6,7 with a gap of 4.

Note that LSDs of inputs are 0,1,2,3. (LSDs might need to be
sorted.)

In stage 1 let a(g.q) = 112 = 3.
Then inputs form one run: 2,3.
LSDs form sequence 0,1.
In stage 1 let aa.q) = 102 = 2.
Then inputs form one run: 4,5.
In stage 1 let aa.q) = 012 = 1.

Then inputs form two (single-digit) runs: 1 and 6 with a gap of
4.

9—11 EE 7725 Lecture Transparency. Formatted 11:57, 8 June 2001 from Islil5. 9—1 ].



0-12 9-12

Application: Spreading, Copying, and Packing

The bitonic permutations are related to three useful families of con-
nection assignments:

Spreading Connection Assignment: A 1-limited GCA (general-
ized connection assignment) in which consecutive inputs
are routed to outputs, preserving order.

Copy Connection Assignment: An N-limited GCA in which con-
secutive inputs are routed (multicast) to outputs, preserv-
ing order.

Packing Connection Assignment: A 1-limited GCA in which a
subset of inputs is connected to consecutive outputs, pre-
serving order.
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Spreading Connection Assignments
Examples:
{(0,2),(1,5),(2,7)} is a spreading CA.
{(0,2),(2,5),(3,7)} is not a spreading CA. (Input 1 is skipped.)

{(0,2),(1,7),(2,5)} is not. (The requests do not appear in the
same order when sorted by outputs.)

Assertion: An omega network can satisfy all spreading connection
assignments.

Proof outline:

It is known that an omega network can realize all bitonic per-
mutations.

It will be shown that a bitonic permutation can be constructed
from any spreading CA.

Consider {(0,2),(1,5),(2,7)}:

01234567
P_<257 )

Construct a bitonic permutation by adding (3,6), (4,4), etc.

It can easily be shown that this procedure will work in all cases.
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Copy Connection Assignments
Examples:

{(0,2),(0,3),(1,5),(2,6),(2,7)}

In the CA above, two “copies” made of data at inputs 0 and 2.
One copy made of data at 1.

These can be realized in omega networks with broadcast capability.

In such networks a single cell input must be able to connect to
both outputs.
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Assertion: All copy CAs can be satisfied by an omega network.
Proof outline:

Proof is by contradiction.

Suppose there is a copy CA that cannot be realized.

Let X be such a CA.

For at least one cell, two requests in X from different inputs
must need the same cell output.

Call the requests A = (a, ) and B = (b, ).
By definition of A and B, a # b.
Construct a spreading CA, X’ in the following way:
Put A and B in X'.
Add one request for each of the other inputs in X to X’.

The result is a spreading CA, which can be satisfied by an
omega network.

Since paths in an omega network are unique, if A and B do not
conflict in X’ they cannot conflict in X.
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Packing Connection Assignments
These are the mirror image (inverse) of spreading CAs.
Examples:
{(3,0),(7,1),(9,2)} is a packing CA.
{(4,2),(7,3),(11,4)} is a packing CA.

Assertion: An inverse omega network can satisfy all packing connec-
tion assignments.

Proof outline:
Show that packing CA is mirror image of spreading CA.

If PeQthen Pt e Q1

9—16 EE 7725 Lecture Transparency. Formatted 11:57, 8 June 2001 from Islil5.

0-16

9-16



