Omega-Network Connection Assignments

A connection assignment that a network can satisfy is an admissible permutation.

The set of all permutations admissible by an m^{n}-input omega network is denoted $\Omega_{m, n}$.

The set of all permutations admissible by an m^{n}-input inverse omega network is denoted $\Omega_{m, n}^{-1}$.

Simple lemma: If $P \in \Omega_{m, n}$ then $P^{-1} \in \Omega_{m, n}^{-1}$.
The contents of $\Omega_{m, n}$ is of interest to those:

- writing parallel algorithms and
- designing networks.

Two families of admissible permutations will be studied:

- Shift and
- Bitonic

Shift Permutations

Used to connect input i to output $p i+c$, where

$$
i, c \in\left\langle 2^{n}\right\rangle \text { and } p \bmod 2=1(p \text { is odd }) .
$$

A permutation is a p, c shift permutation of size 2^{n}, denoted $S_{p, c}$, if for all $x \in\left\langle 2^{n}\right\rangle$

$$
S_{p, c}(x) \equiv x p+c \quad\left(\bmod 2^{n}\right)
$$

where c is a nonnegative integer and p is a nonnegative odd integer.

Examples:

$$
\begin{aligned}
& S_{1,2}=\left(\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 5 & 6 & 7 & 0 & 1
\end{array}\right) \\
& S_{3,2}=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 0 & 3 & 6 & 1 & 4 & 7
\end{array}\right)
\end{aligned}
$$

Examples, illustrated:

The set of all shift permutations of size 2^{n} is given by

$$
\mathcal{S}\left(2^{n}\right)=\bigcup_{x, c \in\langle\infty\rangle}\left\{S_{2 x+1, c}\right\} .
$$

Assertion: Any shift permutation can be satisfied by an omega network, that is, $\mathcal{S}\left(2^{n}\right) \subseteq \Omega_{2, n}$.

Proof Outline

Consider $A=(a, \alpha) \in S_{p, c}$ for an $N=2^{n}$-input omega network.
By definition, $\alpha=p a+c$.
Consider a second request $B=(b, \beta) \in S_{p, c}, b \neq a$.
First prove $\alpha \neq \beta$ for all $a, b \in\langle N\rangle$.
Find the stage terminal needed by requests A and B at cell outputs in stage $i \in\langle n\rangle$.

Request (a, α) uses

$$
\left\langle i, a_{(n-2-i)} a_{(n-3-i)} \ldots a_{(0)} \alpha_{(n-1)} \alpha_{(n-2)} \ldots \alpha_{(n-1-i)}\right\rangle .
$$

Request (b, β) uses

$$
\left\langle i, b_{(n-2-i)} b_{(n-3-i)} \ldots b_{(0)} \beta_{(n-1)} \beta_{(n-2)} \ldots \beta_{(n-1-i)}\right\rangle .
$$

Show that: $\left\langle i, a_{(n-2-i)} a_{(n-3-i)} \ldots a_{(0)} \alpha_{(n-1)} \alpha_{(n-2)} \ldots \alpha_{(n-1-i)}\right\rangle \neq$ $\left\langle i, b_{(n-2-i)} b_{(n-3-i)} \ldots b_{(0)} \beta_{(n-1)} \beta_{(n-2)} \ldots \beta_{(n-1-i)}\right\rangle$. for all $i \in\langle n\rangle, A=(a, \alpha) \in S_{p, c}, B=(b, \beta) \in S_{p, c}, a \neq b$, $p, c \in\langle N\rangle$.

This proof is simple when p is limited to 1 .

Admissibility Proof for Shift Permutations, $p=1$
Since $a \neq b$ (by definition) they differ in ≥ 1 digit.
Let $x+1$ be the lowest-numbered differing digit.
That is, $a_{(0: x)}=b_{(0: x)}$ and $a_{(x+1)} \neq b_{(x+1)}$.
Lemma: $\alpha_{(x+1)} \neq \beta_{(x+1)}$.
Proof:
Consider addition of $\alpha=a+c$ and $\beta=b+c$ by bits.
Let $r_{(x+1)}$ be carry to be added to digit $x+1$.
Since c and digits up to x in A and B are identical...
...the carry $r_{(x+1)}$ must also be identical.
Bitwise addition:

$$
\begin{aligned}
& \alpha_{(x+1)}=a_{(x+1)} \oplus c_{(x+1)} \oplus r_{(x+1)} \\
& \text { and } \beta_{(x+1)}=b_{(x+1)} \oplus c_{(x+1)} \oplus r_{(x+1)} .
\end{aligned}
$$

Since only difference is $a_{(x+1)} \neq b_{(x+1)}$, then $\alpha_{(x+1)} \neq \beta(x+1)$.

Back to admissibility proof:
In stage i, \ldots
\ldots either $a_{(0: n-2-i)} \neq b_{(0: n-2-i)}$ or $\alpha_{(n-1-i: n-1)} \neq \beta_{(n-1-i: n-1)} \ldots$
...either way there is no contention.

Admissibility Proof for Shift Permutations, p Odd

Similar to proof above:

Let $x+1$ be the lowest-numbered differing digit:

$$
a_{(0: x)}=b_{(0: x)} \text { and } a_{(x+1)} \neq b_{(x+1)} .
$$

Lemma: $\alpha_{(x+1)} \neq \beta_{(x+1)}$.
Proof:

Need to compare $(a p)_{(x+1)}$ and $(b p)_{(x+1)}$.

$$
(a p)_{(x+1)}=\left(\sum_{z=0}^{x+1} p_{(z)} a_{(x-z+1)}\right)+R_{x+1} \bmod 2,
$$

where R_{x+1} is the carry.

Splitting the sum yields:

$$
(a p)_{(x+1)}=p_{(0)} a_{(x+1)}+\left(\sum_{z=1}^{x+1} p_{(z)} a_{(x-z+1)}\right)+R_{x+1} \bmod 2,
$$

Since $a_{(0: x)}=b_{(0: x)}$ expressions for $(a p)_{(x+1)}$ and $(b p)_{(x+1)}$ differ \ldots
\ldots only in $p_{(0)} a_{(x+1)}$ and $p_{(0)} b_{(x+1)} \ldots$
$\ldots\left(\right.$ noting that since p is odd, $\left.p_{(0)}=1\right) \ldots$
\ldots and so $(a p)_{(x+1)} \neq(b p)_{(x+1)} \ldots$
\ldots and therefore $\alpha_{(x+1)} \neq \beta_{(x+1)}$.

Remainder of proof is the same:
In stage i, \ldots
\ldots either $a_{(0: n-2-i)} \neq b_{(0: n-2-i)}$ or $\alpha_{(n-1-i: n-1)} \neq \beta_{(n-1-i: n-1)} \ldots$. . .either way there is no contention.

Bitonic Permutations

A sequence of numbers is bitonic if the magnitude of the numbers first increases then decreases, or if the magnitude of the numbers first decreases then increases.

Examples:
1,1,2,5,5,4,0
1,2,1
5,3,0,8
Not bitonic: $1,2,0,3$ and $1,2,3,4$.

The definition of a bitonic permutation will have a slight difference: The sequence is a sequence of integers, the integers are a permutation of $\left\langle m^{n}\right\rangle$, and the sequence when shifted is bitonic.

A permutation for which the sequence $P(c), P(c+1), P(c+2), \ldots$, $P\left(c+m^{n}-1\right)$ is bitonic is called a bitonic permutation, where P is a permutation of $\langle m\rangle^{n}, c$ is an integer, and arithmetic is modulo m^{n}.

Examples:

$$
P_{1}=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 5 & 7 & 6 & 4 & 1 & 0
\end{array}\right) P_{2}=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 7 & 6 & 4 & 1 & 0 & 2 & 3
\end{array}\right)
$$

Theorem: Let symbol $\mathcal{B}\left(m^{n}\right)$ denote the set of all bitonic permutations of $\left\langle m^{n}\right\rangle$. Then $\mathcal{B}\left(m^{n}\right) \subseteq \Omega_{m, n}$.

Proof Introduction:

Let $P \in \mathcal{B}$ and $(a, \alpha) \in P$ and $(b, \beta) \in P,(a \neq b)$.
Link used by (a, α) at cell output in stage x is. . .
$\ldots a_{(n-x-2)} a_{(n-x-3)} \cdots a_{(0)} \alpha_{(n-1)} \alpha_{(n-2)} \cdots \alpha_{(n-x-1)}$.
Similarly (b, β) uses $b_{(n-x-2)} b_{(n-x-3)} \cdots b_{(0)} \beta_{(n-1)} \beta_{(n-2)} \cdots \beta_{(n-x-1)}$.
To prove (a, α) and (b, β) don't share a link...
...sufficient to show that...
\ldots if $\alpha_{(n-1)} \cdots \alpha_{(n-x-1)}=\beta_{(n-1)} \cdots \beta_{(n-x-1)}$
\ldots.then $a_{(n-x-2)} a_{(n-x-3)} \cdots a_{(0)} \neq b_{(n-x-2)} b_{(n-x-3)} \cdots b_{(0)}$.

Proof Introduction In words:

Call $a_{(n-x-2)} a_{(n-x-3)} \cdots a_{(0)}$ and $b_{(n-x-2)} b_{(n-x-3)} \cdots b_{(0)}$ the (input) LSDs.

Call $\alpha_{(n-1)} \cdots \alpha_{(n-x-1)}$ and $\beta_{(n-1)} \cdots \beta_{(n-x-1)}$ the (output) MSDs.
Need to prove: if the MSDs of two requests match,...
...the LSDs must be different.

For rest of proof consider only requests with

$$
\alpha_{(n-1)} \cdots \alpha_{(n-x-1)}=\beta_{(n-1)} \cdots \beta_{(n-x-1)}
$$

Proof Observation:

Because P is a permutation...
\ldots for each choice of $\alpha_{(n-1)} \cdots \alpha_{(n-x-1)} \cdots$
\ldots.there are m^{n-x-1} requests in P.
If the LSDs of the inputs of those m^{n-x-1} requests are distinct...
$\ldots\left(e . g ., a_{(n-x-2)} a_{(n-x-3)} \cdots a_{(0)} \neq a_{(n-x-2)} a_{(n-x-3)} \cdots a_{(0)}\right)$
\ldots then (a, α) and (b, β) won't share a link.
So, that's what will be proven.

Proof Outline:

Show that for a given $\alpha_{(n-1)} \cdots \alpha_{(n-x-1)} \cdots$
...the possible input numbers form up to 3 runs of consecutive numbers.
(By property of bitonic sequences.)
Show that gaps between runs contain a multiple of m^{n-x-1} inputs.
(Show directly for $\alpha_{(n-1)} \cdots \alpha_{(n-x-1)}=m^{x+1}-2$, proceed with induction on $\alpha_{(n-1)} \cdots \alpha_{(n-x-1)}$.)

Show a bijection between m^{n-x-1} consecutive integers...
...and the inputs.

For example consider $P=\left(\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 7 & 6 & 5 & 4 & 2 & 0\end{array}\right)$ for $\Omega_{2,3}$.
In stage 0 let $\alpha_{(2)}=1$.
Then inputs form one run: $2,3,4,5$ and there is no gap.
In stage 0 let $\alpha_{(2)}=0$.
Then inputs form two runs: 0,1 and 6,7 with a gap of 4 .
Note that LSDs of inputs are $0,1,2,3$. (LSDs might need to be sorted.)

In stage 1 let $\alpha_{(2: 1)}=11_{2}=3$.
Then inputs form one run: 2,3 .
LSDs form sequence 0,1 .
In stage 1 let $\alpha_{(2: 1)}=10_{2}=2$.
Then inputs form one run: 4,5 .
In stage 1 let $\alpha_{(2: 1)}=01_{2}=1$.
Then inputs form two (single-digit) runs: 1 and 6 with a gap of 4.

Application: Spreading, Copying, and Packing
The bitonic permutations are related to three useful families of connection assignments:

Spreading Connection Assignment: A 1-limited GCA (generalized connection assignment) in which consecutive inputs are routed to outputs, preserving order.

Copy Connection Assignment: An N-limited GCA in which consecutive inputs are routed (multicast) to outputs, preserving order.

Packing Connection Assignment: A 1-limited GCA in which a subset of inputs is connected to consecutive outputs, preserving order.

Spreading Connection Assignments

Examples:
$\{(0,2),(1,5),(2,7)\}$ is a spreading CA.
$\{(0,2),(2,5),(3,7)\}$ is not a spreading CA. (Input 1 is skipped.)
$\{(0,2),(1,7),(2,5)\}$ is not. (The requests do not appear in the same order when sorted by outputs.)

Assertion: An omega network can satisfy all spreading connection assignments.

Proof outline:
It is known that an omega network can realize all bitonic permutations.

It will be shown that a bitonic permutation can be constructed from any spreading CA.

Consider $\{(0,2),(1,5),(2,7)\}$:

$$
P=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 7 & & & & &
\end{array}\right)
$$

Construct a bitonic permutation by adding $(3,6),(4,4)$, etc.
It can easily be shown that this procedure will work in all cases.

Copy Connection Assignments

Examples:

$$
\{(0,2),(0,3),(1,5),(2,6),(2,7)\}
$$

In the CA above, two "copies" made of data at inputs 0 and 2 . One copy made of data at 1 .

These can be realized in omega networks with broadcast capability.
In such networks a single cell input must be able to connect to both outputs.

Assertion: All copy CAs can be satisfied by an omega network.
Proof outline:
Proof is by contradiction.
Suppose there is a copy CA that cannot be realized.
Let X be such a CA.
For at least one cell, two requests in X from different inputs must need the same cell output.

Call the requests $A=(a, \alpha)$ and $B=(b, \beta)$.
By definition of A and $B, a \neq b$.
Construct a spreading CA, X^{\prime} in the following way:
Put A and B in X^{\prime}.
Add one request for each of the other inputs in X to X^{\prime}.
The result is a spreading CA, which can be satisfied by an omega network.

Since paths in an omega network are unique, if A and B do not conflict in X^{\prime} they cannot conflict in X.

Packing Connection Assignments

These are the mirror image (inverse) of spreading CAs.
Examples:
$\{(3,0),(7,1),(9,2)\}$ is a packing CA.
$\{(4,2),(7,3),(11,4)\}$ is a packing CA.
Assertion: An inverse omega network can satisfy all packing connection assignments.

Proof outline:
Show that packing CA is mirror image of spreading CA.
If $P \in \Omega$ then $P^{-1} \in \Omega^{-1}$.

