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Omega-Network Connection Assignments

A connection assignment that a network can satisfy is an admissible
permutation.

The set of all permutations admissible by an mn-input omega network
is denoted Ωm,n.

The set of all permutations admissible by an mn-input inverse omega
network is denoted Ω−1

m,n.

Simple lemma: If P ∈ Ωm,n then P−1 ∈ Ω−1
m,n.

The contents of Ωm,n is of interest to those:

• writing parallel algorithms and

• designing networks.

Two families of admissible permutations will be studied:

• Shift and

• Bitonic
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Shift Permutations

Used to connect input i to output pi + c, where

i, c ∈ 〈2n〉 and p mod 2 = 1 (p is odd).

A permutation is a p, c shift permutation of size 2n, denoted Sp,c, if
for all x ∈ 〈2n〉

Sp,c(x) ≡ xp + c (mod 2n),

where c is a nonnegative integer and p is a nonnegative odd
integer.

Examples:

S1,2 =
(

0 1 2 3 4 5 6 7
2 3 4 5 6 7 0 1

)

S3,2 =
(

0 1 2 3 4 5 6 7
2 5 0 3 6 1 4 7

)

Examples, illustrated:
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The set of all shift permutations of size 2n is given by

S(2n) =
⋃

x,c∈〈∞〉
{S2x+1,c}.

Assertion: Any shift permutation can be satisfied by an omega net-
work, that is, S(2n) ⊆ Ω2,n.

Proof Outline

Consider A = (a, α) ∈ Sp,c for an N = 2n-input omega network.

By definition, α = pa + c.

Consider a second request B = (b, β) ∈ Sp,c, b 6= a.

First prove α 6= β for all a, b ∈ 〈N〉.
Find the stage terminal needed by requests A and B at cell outputs

in stage i ∈ 〈n〉.
Request (a, α) uses

〈
i, a(n−2−i)a(n−3−i) . . . a(0)α(n−1)α(n−2) . . . α(n−1−i)

〉
.

Request (b, β) uses

〈
i, b(n−2−i)b(n−3−i) . . . b(0)β(n−1)β(n−2) . . . β(n−1−i)

〉
.

Show that:
〈
i, a(n−2−i)a(n−3−i) . . . a(0)α(n−1)α(n−2) . . . α(n−1−i)

〉 6=〈
i, b(n−2−i)b(n−3−i) . . . b(0)β(n−1)β(n−2) . . . β(n−1−i)

〉
.

for all i ∈ 〈n〉, A = (a, α) ∈ Sp,c, B = (b, β) ∈ Sp,c, a 6= b,
p, c ∈ 〈N〉.

This proof is simple when p is limited to 1.
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Admissibility Proof for Shift Permutations, p = 1

Since a 6= b (by definition) they differ in ≥ 1 digit.

Let x + 1 be the lowest-numbered differing digit.

That is, a(0:x) = b(0:x) and a(x+1) 6= b(x+1).

Lemma: α(x+1) 6= β(x+1).

Proof:

Consider addition of α = a + c and β = b + c by bits.

Let r(x+1) be carry to be added to digit x + 1.

Since c and digits up to x in A and B are identical. . .

. . .the carry r(x+1) must also be identical.

Bitwise addition:

α(x+1) = a(x+1) ⊕ c(x+1) ⊕ r(x+1)

and β(x+1) = b(x+1) ⊕ c(x+1) ⊕ r(x+1).

Since only difference is a(x+1) 6= b(x+1), then α(x+1) 6= β(x + 1).

Back to admissibility proof:

In stage i,. . .

. . . either a(0:n−2−i) 6= b(0:n−2−i) or α(n−1−i:n−1) 6= β(n−1−i:n−1). . .

. . .either way there is no contention.
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Admissibility Proof for Shift Permutations, p Odd

Similar to proof above:

Let x + 1 be the lowest-numbered differing digit:

a(0:x) = b(0:x) and a(x+1) 6= b(x+1).

Lemma: α(x+1) 6= β(x+1).

Proof:

Need to compare (ap)(x+1) and (bp)(x+1).

(ap)(x+1) =

(
x+1∑
z=0

p(z)a(x−z+1)

)
+ Rx+1 mod 2,

where Rx+1 is the carry.

Splitting the sum yields:

(ap)(x+1) = p(0)a(x+1) +

(
x+1∑
z=1

p(z)a(x−z+1)

)
+ Rx+1 mod 2,

Since a(0:x) = b(0:x) expressions for (ap)(x+1) and (bp)(x+1) differ . . .

. . . only in p(0)a(x+1) and p(0)b(x+1) . . .

. . . (noting that since p is odd, p(0) = 1). . .

. . . and so (ap)(x+1) 6= (bp)(x+1). . .

. . . and therefore α(x+1) 6= β(x+1).
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Remainder of proof is the same:

In stage i,. . .

. . . either a(0:n−2−i) 6= b(0:n−2−i) or α(n−1−i:n−1) 6= β(n−1−i:n−1). . .

. . .either way there is no contention.
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Bitonic Permutations

A sequence of numbers is bitonic if the magnitude of the numbers first
increases then decreases, or if the magnitude of the numbers first
decreases then increases.

Examples:

1,1,2,5,5,4,0

1,2,1

5,3,0,8

Not bitonic: 1,2,0,3 and 1,2,3,4.

The definition of a bitonic permutation will have a slight difference:

The sequence is a sequence of integers,

the integers are a permutation of 〈mn〉, and

the sequence when shifted is bitonic.
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A permutation for which the sequence P (c), P (c + 1), P (c + 2), . . . ,
P (c + mn − 1) is bitonic is called a bitonic permutation, where
P is a permutation of 〈m〉n, c is an integer, and arithmetic is
modulo mn.

Examples:

P1 =
(

0 1 2 3 4 5 6 7
2 3 5 7 6 4 1 0

)
P2 =

(
0 1 2 3 4 5 6 7
5 7 6 4 1 0 2 3

)
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Theorem: Let symbol B(mn) denote the set of all bitonic permuta-
tions of 〈mn〉. Then B(mn) ⊆ Ωm,n.

Proof Introduction:

Let P ∈ B and (a, α) ∈ P and (b, β) ∈ P , (a 6= b).

Link used by (a, α) at cell output in stage x is. . .

. . . a(n−x−2)a(n−x−3) · · · a(0)α(n−1)α(n−2) · · ·α(n−x−1).

Similarly (b, β) uses b(n−x−2)b(n−x−3) · · · b(0)β(n−1)β(n−2) · · ·β(n−x−1).

To prove (a, α) and (b, β) don’t share a link. . .

. . .sufficient to show that. . .

. . .if α(n−1) · · ·α(n−x−1) = β(n−1) · · ·β(n−x−1)

. . .then a(n−x−2)a(n−x−3) · · · a(0) 6= b(n−x−2)b(n−x−3) · · · b(0).

Proof Introduction In words:

Call a(n−x−2)a(n−x−3) · · · a(0) and b(n−x−2)b(n−x−3) · · · b(0) the (input)
LSDs.

Call α(n−1) · · ·α(n−x−1) and β(n−1) · · ·β(n−x−1) the (output) MSDs.

Need to prove: if the MSDs of two requests match,. . .

. . .the LSDs must be different.

For rest of proof consider only requests with

α(n−1) · · ·α(n−x−1) = β(n−1) · · ·β(n−x−1)

9-9 EE 7725 Lecture Transparency. Formatted 11:57, 8 June 2001 from lsli15. 9-9



9-10 9-10

Proof Observation:

Because P is a permutation. . .

. . .for each choice of α(n−1) · · ·α(n−x−1). . .

. . .there are mn−x−1 requests in P .

If the LSDs of the inputs of those mn−x−1 requests are distinct. . .

. . .(e.g., a(n−x−2)a(n−x−3) · · · a(0) 6= a(n−x−2)a(n−x−3) · · · a(0))

. . .then (a, α) and (b, β) won’t share a link.

So, that’s what will be proven.

Proof Outline:

Show that for a given α(n−1) · · ·α(n−x−1) . . .

. . .the possible input numbers form up to 3 runs of consecutive num-
bers.

(By property of bitonic sequences.)

Show that gaps between runs contain a multiple of mn−x−1 inputs.

(Show directly for α(n−1) · · ·α(n−x−1) = mx+1 −2, proceed with
induction on α(n−1) · · ·α(n−x−1).)

Show a bijection between mn−x−1 consecutive integers. . .

. . .and the inputs.
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For example consider P =
(

0 1 2 3 4 5 6 7
1 3 7 6 5 4 2 0

)
for Ω2,3.

In stage 0 let α(2) = 1.

Then inputs form one run: 2,3,4,5 and there is no gap.

In stage 0 let α(2) = 0.

Then inputs form two runs: 0,1 and 6,7 with a gap of 4.

Note that LSDs of inputs are 0,1,2,3. (LSDs might need to be
sorted.)

In stage 1 let α(2:1) = 112 = 3.

Then inputs form one run: 2,3.

LSDs form sequence 0,1.

In stage 1 let α(2:1) = 102 = 2.

Then inputs form one run: 4,5.

In stage 1 let α(2:1) = 012 = 1.

Then inputs form two (single-digit) runs: 1 and 6 with a gap of
4.
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Application: Spreading, Copying, and Packing

The bitonic permutations are related to three useful families of con-
nection assignments:

Spreading Connection Assignment: A 1-limited GCA (general-
ized connection assignment) in which consecutive inputs
are routed to outputs, preserving order.

Copy Connection Assignment: An N -limited GCA in which con-
secutive inputs are routed (multicast) to outputs, preserv-
ing order.

Packing Connection Assignment: A 1-limited GCA in which a
subset of inputs is connected to consecutive outputs, pre-
serving order.
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Spreading Connection Assignments

Examples:

{(0, 2), (1, 5), (2, 7)} is a spreading CA.

{(0, 2), (2, 5), (3, 7)} is not a spreading CA. (Input 1 is skipped.)

{(0, 2), (1, 7), (2, 5)} is not. (The requests do not appear in the
same order when sorted by outputs.)

Assertion: An omega network can satisfy all spreading connection
assignments.

Proof outline:

It is known that an omega network can realize all bitonic per-
mutations.

It will be shown that a bitonic permutation can be constructed
from any spreading CA.

Consider {(0, 2), (1, 5), (2, 7)}:

P =
(

0 1 2 3 4 5 6 7
2 5 7

)

Construct a bitonic permutation by adding (3, 6), (4, 4), etc.

It can easily be shown that this procedure will work in all cases.
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Copy Connection Assignments

Examples:

{(0, 2), (0, 3), (1, 5), (2, 6), (2, 7)}
In the CA above, two “copies” made of data at inputs 0 and 2.

One copy made of data at 1.

These can be realized in omega networks with broadcast capability.

In such networks a single cell input must be able to connect to
both outputs.
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Assertion: All copy CAs can be satisfied by an omega network.

Proof outline:

Proof is by contradiction.

Suppose there is a copy CA that cannot be realized.

Let X be such a CA.

For at least one cell, two requests in X from different inputs
must need the same cell output.

Call the requests A = (a, α) and B = (b, β).

By definition of A and B, a 6= b.

Construct a spreading CA, X ′ in the following way:

Put A and B in X ′.

Add one request for each of the other inputs in X to X ′.

The result is a spreading CA, which can be satisfied by an
omega network.

Since paths in an omega network are unique, if A and B do not
conflict in X ′ they cannot conflict in X.
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Packing Connection Assignments

These are the mirror image (inverse) of spreading CAs.

Examples:

{(3, 0), (7, 1), (9, 2)} is a packing CA.

{(4, 2), (7, 3), (11, 4)} is a packing CA.

Assertion: An inverse omega network can satisfy all packing connec-
tion assignments.

Proof outline:

Show that packing CA is mirror image of spreading CA.

If P ∈ Ω then P−1 ∈ Ω−1.
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