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Classes of Circuit-Switched Networks

Circuit-switched networks are classified based upon:

• the connection assignments they can realize and

• how they can change from satisfying one CA to satisfying an-
other.

Types of Connection Assignments

Permutation CA: a set of requests in which each input and output
appears exactly once.

The symbol ΣN will denote the set of all permutation connection
assignments for N -input, N -output networks.

Note: |ΣN | = N !

A network is called a permutation network if it can satisfy all permu-
tation connection assignments.

d-limited generalized CA: a set of requests in which no input appears
more than d times and no output appears more than once.

A network is called a d-limited generalized connector if it can satisfy
all d-limited generalized connection assignments.

Generalized CA: a set of requests in which no output appears more
than once.

A network is called a generalized connector if it can satisfy all gener-
alized connection assignments.
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Ways in Which Networks Change Connection Assignments

Consider two CAs, A and B.

Suppose a network is to satisfy A and then B.

The following might occur:

• Paths are set up for A.

• Data for A is transmitted.

• Paths for A are torn down.

• Paths are set up for B.

• Data for B is transmitted.

• Paths for B are torn down.

In most cases this would be fine, but suppose:

A = C ∪ {(a, α)} and B = C ∪ {(b, β)} and |C| = 99, 999.

In this case, 99, 999 paths are being torn down and then being
immediately rebuilt. Imagine the waste!

Q: Would it be possible to only tear down the paths that change?

A: It depends upon the type of network.

For banyans the answer is yes. But these aren’t permutation
networks.

For inexpensive permutation networks the answer is no.
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Network Types

A network is non-blocking if it can change from satisfying A to satis-
fying B without tearing down paths in A ∩ B, where A and B
are any two connection assignments the network can realize.

A network is rearrangeably non-blocking if when changing from satis-
fying A to satisfying B it may tear down and rebuild some paths
in A∩B, where A and B are any two connection assignments the
network can realize. These networks are called rearrangeable for
short.

A network is strictly non-blocking if it can change from satisfying A to
satisfying B without tearing down paths in A∩B for any routing
of A, where A and B are any two connection assignments the
network can realize.

A network is wide-sense non-blocking if it can change from satisfying
A to satisfying B without tearing down paths in A∩B if a proper
routing procedure had been followed for A, where A and B are
any two connection assignments the network can realize.
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12-4 12-4Generic Clos Network

One of several networks described by Clos in BSTJ 1953.

0
1

m-1

0
1

m'-1

0
1

k-1

0
1

k-1

0
1

m-1

0
1

m'-1

0
1

m-1

0
1

m'-1

k-1

1

0 0

1

m'-1

k-1

1

0

0
1

k-1

0
1

k-1

0

1

k-1

0

1

k-1

0
1

m-1

0
1

m'-1

0
1

m-1

0
1

m'-1

0
1

m-1

0
1

m'-1

0
1

m-1

m
m+1

2m-1

(k-1)m
(k-1)m+1

km-1

0
1

m-1

m
m+1

2m-1

(k-1)m
(k-1)m+1

km-1

• First stage consists of m × m′ cells.

• Middle stage starts with σk,m′ link pattern.

• Middle stage consists of k × k cells.

• Last stage starts with σm′,k link pattern.

• Last stage consists of m′ × m cells.

Characteristics determined by m′; two to be considered:

• Non-blocking.

• Rearrangeable.
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12-5 12-5Non-Blocking Clos Network

The non-blocking Clos network is a strictly non-blocking permuta-
tion network.

For non-blocking Clos networks m′ = 2m − 1.

Example, k = 4, m = 2:

Why 2m − 1?
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Proof the Network is Strictly Non-Blocking

Plan: find route for request (0, 0) under worst-case conditions.

In first stage (0, 0) can be blocked by ≤ m − 1 requests.

In center stage (0, 0) can be blocked by ≤ m − 1 requests.

Therefore, 2(m − 1) + 1 = 2m − 1 center-stage cells needed.
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Cost of Strictly Non-Blocking Clos Network

Cost C(m, k) = 4km2 − 2km + 2mk2 − k2 crosspoints.

Minimum cost for fixed N :

First, eliminate k from equation.

N = mk, so, k = N/m.

C(m, N) = 4Nm − 2N +
2N2

m
−

(
N

m

)2

crosspoints

Take the derivative with respect to m:

d

dm
C(m, N) = 4N − 2N2

m2
+

2N2

m3

Cost is minimal for values of m that solve:

0 =
2m3

N
− m + 1

m ≈ √
N/2.

Cost of approx.-minimum-cost network 4
√

2N1.5 − 4N crosspoints.

Cost is better than a crossbar, but not nearly the O(N log N) of the
banyan.

12-7 EE 7725 Lecture Transparency. Formatted 11:57, 8 June 2001 from lsli18. 12-7



12-8 12-8Rearrangeable Clos Network

The rearrangeable Clos network is a permutation network.

Usually just called a Clos network.

A generic Clos network with m′ = m.

Example, k = 4, m = 2:
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Why m?

Answer not as simple as strictly non-blocking Clos.

Will be covered after routing.
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12-9 12-9Routing Rearrangeable Clos Networks

The Looping Algorithm

Looping algorithm used to route Clos networks in which m = 2.

It can also route Clos networks in which m is a power of 2.

Developed by Opferman and Wu.1

Definition

The dual of a 2 × 2 cell input is the other input to that cell.

The dual of a 2 × 2 cell output is the other output of that cell.

1 D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks
part I: control algorithms, part II: enumeration studies and fault diagnosis,” Bell System
Technical Journal, vol. 50, no. 5, pp. 1579-1618, May 1971.
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12-10 12-10The Looping Algorithm, Informally
1: Start loop: If all inputs routed, then done. Otherwise, choose an

unrouted request, set input-stage cell arbitrarily.
2: Continue loop: Set middle and output stage cells.
3: For dual of output just routed:
4: Set middle-stage cell (back towards inputs).
5: If input-stage cell already set, goto Start loop. Otherwise consider

dual of input, goto Continue loop.

P =
(

0 1 2 3 4 5 6 7
4 3 6 7 2 1 5 0
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P−1 =

(
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12-11 12-11The Looping Algorithm, Pseudocode

INPUT
INT N /* the number of inputs. */, P[N] /* the permutation */.

CONSTANTS
INT top=0, bottom=1, unset=N

INITIALIZE
INT unrouted=0, left=0, right, PI=Inverse(P)
INT LeftCell[i]=RightCell[i]=unset FOR i = 0 to N/2-1

BEGIN
DO{
WHILE( LeftCell[unrouted] != unset ){unrouted++}
IF unrouted >= N/2 THEN RETURN ELSE left=2*unrouted ENDIF

DO{
SWITCH
CASE (left MOD 2 == top): LeftCell[left/2]=0 /* Identity */
CASE (left MOD 2 == bottom): LeftCell[left/2]=1 /* Transpose */

ENDSWITCH

right=P[left]

SWITCH
CASE (right MOD 2 == top): RightCell[right/2]=0 /* Identity */
CASE (right MOD 2 == bottom):RightCell[right/2]=1 /* Transpose */

ENDSWITCH

left=( PI[ right XOR 1 ] ) XOR 1
IF LeftCell[left/2] != unset THEN QUITLOOP ENDIF

}ENDDO
}ENDDO
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12-12 12-12Looping Algorithm Example

P =
(

0 1 2 3 4 5 6 7
4 3 6 7 2 1 5 0

)
P−1 =

(
0 1 2 3 4 5 6 7
7 5 4 1 0 6 2 3

)
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12-13 12-13Looping Algorithm

Time Complexity

Initialization

Most of time spent computing permutation inverse: O(N).

Number of iterations: N/2 (one for each input-stage cell).

Operations per iteration:

(Iteration includes inner DO loops.)

Several operations, each taking O(1) time.

Time complexity: O(N).

Irony

Time to traverse network, 3 crosspoints.

Time to find path through, O(N).

There are parallel algorithms which can route Clos network m = 2 in
O(log N) time.

There is no way that a permutation connection assignment could route
itself, as in an omega network.
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Clos Network Cost

C(m, k) = 2km2 + k2m xp.

Slightly Lower Cost Rearrangeable Clos Network

Replace any input- or output-stage cell with a link pattern.

This simplification due to Waksman1 and others.
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Now how much do we pay?

C(m, k) = (2k − 1)m2 + k2m xp.

1 Abraham Waksman, “A permutation network,” Journal of the Association for Computing
Machinery, vol. 15, no. 1, pp. 159-163, January 1968.
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Proof of Rearrangeability of Clos Network

Due to Slepian (1952, unpublished) and Duguid (1959, just a technical
report).

Called the Slepian-Duguid proof.

Proof outline:

I Show that a single center-stage cell can always be routed.

II Show that routing the remaining cells is equivalent to routing a
smaller Clos network.

III Use induction on size.
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Part I of Proof

Assertion: For any rearrangeable Clos network and any permutation
connection assignment there is always a set of requests that can
be routed through a middle-stage cell.
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Part I proof outline:

• Description of something called a set of distinct representatives
(SoDR).

• Description of how a SoDR relates to routing a single middle-
stage cell.

• Use of Hall’s Theorem2 to prove the existence of a SoDR, in
general.

• Use of Hall’s Theorem to prove the existence of a SoDR, for Clos
networks.

2 P. Hall, “On representatives of subsets,” Journal of the London Mathematics Society,
vol. 10, pp. 26-30, 1935.
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Theorem of Distinct Representatives (Hall’s Theorem)

Let S be a set, Ai ⊆ S, and ai ∈ Ai for 0 ≤ i < k.

The elements ai are a set of distinct representatives (SoDR) of Ai if
ai 6= aj when i 6= j.

The theorem: there exists a set of distinct representatives of Ai if the
union of any κ ≤ k subsets have at least κ distinct elements.

Stated another way: there exists a set of distinct representatives of Ai

if

∀ K ⊆ 〈k〉,
∣∣∣∣∣
⋃
i∈K

Ai

∣∣∣∣∣ ≥ |K|.
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Stated Using Balls and Urns

Let S be a set of balls, each of a different color.

S = {r, w, b}.
Let there be k urns, denoted Ai, for 0 ≤ i < k.

Each urn has zero or more balls (the same kind as in S).

A0 = {r, w}, A1 = {r, b}, A2 = {w}.
Remove one ball from each urn.

These are a SoDR if each ball is a different color.

a0 = r, a1 = b, and a2 = w.

It’s not always possible to find a SoDR.

A SoDR exists iff there are κ ≤ k different color balls inside any
combination of κ urns.

In the example above:

For κ = 1: Urn 0, 2 colors; urn 1, 2 colors; urn 2, 1 color.

For κ = 2: Urn 0 & 1, 3 colors; urn 0 & 2, 2 colors; urn 1 & 2,
3 colors.

For κ = 3: Urn 0 & 1 & 2: 3 colors.

So there exists a SoDR. (But we already knew that.)
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Hall’s Theorem and Clos’ Network

The set S is a set of output-stage cell labels.

Consider request (a, α).

This request enters through cell 〈0, ba/mc〉 and

exits through cell 〈2, bα/mc〉.
Define c( (a, α) ) = bα/mc.

The subsets Ai are the output-stage cells through which requests en-
tering 〈0, i〉 pass. That is,

Ai = { c( (a, α) ) | (a, α) ∈ P, ba/mc = i } ,

where P is a permutation connection assignment.

The SoDR are used to find the permutation to be realized by a middle-
stage cell:

π(〈1, 0〉) =
(

0 1 · · · k − 1
a0 a1 · · · ak−1

)
.

For permutation

P =
(

0 1 2 3 4 5 6 7 8 9 10 11
7 3 6 5 2 1 0 10 11 8 4 9

)
,

A0 = {2, 1, 2}, A1 = {1, 0, 0}, A2 = {0, 3, 3}, and A3 = {2, 1, 3}.
One possible SoDR: a0 = 2, a1 = 1, a2 = 0, a3 = 3.
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Proof That a SoDR Can Always be Found for a Clos Network

Consider the requests associated with input-stage cells in K ⊆ 〈k〉,
κ = |K|:

P ′ = { (a, α) | (a, α) ∈ P, ba/mc ∈ K }.
Consider the output-stage cells that these requests pass through:

A = { c(A) | A ∈ P ′ }

Obviously, |P ′| = mκ.

Since each output-stage cell can appear at most m times:

|A| ≥ |P ′|
m

=
mκ

m
= κ

In other words, for any set of κ ≤ k input-stage cells there are requests
to pass through at least κ output-stage cells.

Therefore, by Hall’s Theorem, one request passing through each input-
stage cell can be chosen that goes through a different output-
stage cell.

These requests can be used to route a middle-stage cell.

This completes the proof of Part I.
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Proof of Part II

Assertion: Finishing the routing of a (3, (m, k, m), (k, m, k), T, T) Clos
network in which a single middle-stage cell is routed is equivalent
to the problem of routing an entire (3, (m− 1, k, m− 1), (k, m−
1, k), T, T) Clos network.

This can easily be visualized:
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Details will be omitted. (This would make a good homework or final-
exam question.)
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Part III: Denouement

Theorem: All of the (3, (m, k, m), (k, m, k), T, T) Clos Networks are
permutation networks.

Proof by induction on m:

Basis: A Clos network with one center-stage cell (i.e., m = 1)
can always be routed.

Proof: By definition of the crossbar, or using Hall’s Theorem as
in Part I.

Inductive Hypothesis: All Clos Networks of size

(3, (m′, k, m′), (k, m′, k), T, T)

for, 0 < m′ < m, can be routed.

Assertion: If the IH is true then a (3, (m, k, m), (k, m, k), T, T)
Clos Network can be routed.

Proof:

By Part I a single center-stage cell can be routed.

By Part II and the IH the remainder of the network can
be routed by routing an appropriately constructed
(3, (m − 1, k, m − 1), (k, m − 1, k), T, T) network.

Thus, a (3, (m, k, m), (k, m, k), T, T) Clos Network can be
routed.
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