Classes of Circuit-Switched Networks

Circuit-switched networks are classified based upon:

- the connection assignments they can realize and
- how they can change from satisfying one CA to satisfying another.

Types of Connection Assignments

Permutation CA: a set of requests in which each input and output appears exactly once.

The symbol Σ_{N} will denote the set of all permutation connection assignments for N-input, N-output networks.

Note: $\left|\Sigma_{N}\right|=N!$
A network is called a permutation network if it can satisfy all permutation connection assignments.
d-limited generalized CA: a set of requests in which no input appears more than d times and no output appears more than once.

A network is called a d-limited generalized connector if it can satisfy all d-limited generalized connection assignments.

Generalized CA: a set of requests in which no output appears more than once.

A network is called a generalized connector if it can satisfy all generalized connection assignments.

Ways in Which Networks Change Connection Assignments

Consider two CAs, A and B.
Suppose a network is to satisfy A and then B.
The following might occur:

- Paths are set up for A.
- Data for A is transmitted.
- Paths for A are torn down.
- Paths are set up for B.
- Data for B is transmitted.
- Paths for B are torn down.

In most cases this would be fine, but suppose:
$A=C \cup\{(a, \alpha)\}$ and $B=C \cup\{(b, \beta)\}$ and $|C|=99,999$.
In this case, 99,999 paths are being torn down and then being immediately rebuilt. Imagine the waste!
$Q:$ Would it be possible to only tear down the paths that change?
\mathcal{A} : It depends upon the type of network.
For banyans the answer is yes. But these aren't permutation networks.

For inexpensive permutation networks the answer is no.

Network Types

A network is non-blocking if it can change from satisfying A to satisfying B without tearing down paths in $A \cap B$, where A and B are any two connection assignments the network can realize.

A network is rearrangeably non-blocking if when changing from satisfying A to satisfying B it may tear down and rebuild some paths in $A \cap B$, where A and B are any two connection assignments the network can realize. These networks are called rearrangeable for short.

A network is strictly non-blocking if it can change from satisfying A to satisfying B without tearing down paths in $A \cap B$ for any routing of A, where A and B are any two connection assignments the network can realize.

A network is wide-sense non-blocking if it can change from satisfying A to satisfying B without tearing down paths in $A \cap B$ if a proper routing procedure had been followed for A, where A and B are any two connection assignments the network can realize.

One of several networks described by Clos in BSTJ 1953.

- First stage consists of $m \times m^{\prime}$ cells.
- Middle stage starts with $\sigma_{k, m^{\prime}}$ link pattern.
- Middle stage consists of $k \times k$ cells.
- Last stage starts with $\sigma_{m^{\prime}, k}$ link pattern.
- Last stage consists of $m^{\prime} \times m$ cells.

Characteristics determined by m^{\prime}; two to be considered:

- Non-blocking.
- Rearrangeable.

The non-blocking Clos network is a strictly non-blocking permutation network.

For non-blocking Clos networks $m^{\prime}=2 m-1$.

Example, $k=4, m=2$:

Why $2 m-1$?

Proof the Network is Strictly Non-Blocking

Plan: find route for request $(0,0)$ under worst-case conditions.

In first stage $(0,0)$ can be blocked by $\leq m-1$ requests. In center stage $(0,0)$ can be blocked by $\leq m-1$ requests. Therefore, $2(m-1)+1=2 m-1$ center-stage cells needed.

Cost of Strictly Non-Blocking Clos Network

Cost $C(m, k)=4 k m^{2}-2 k m+2 m k^{2}-k^{2}$ crosspoints.
Minimum cost for fixed N :
First, eliminate k from equation.
$N=m k$, so, $k=N / m$.

$$
C(m, N)=4 N m-2 N+\frac{2 N^{2}}{m}-\left(\frac{N}{m}\right)^{2} \quad \text { crosspoints }
$$

Take the derivative with respect to m :

$$
\frac{d}{d m} C(m, N)=4 N-\frac{2 N^{2}}{m^{2}}+\frac{2 N^{2}}{m^{3}}
$$

Cost is minimal for values of m that solve:

$$
0=\frac{2 m^{3}}{N}-m+1
$$

$m \approx \sqrt{N / 2}$.
Cost of approx.-minimum-cost network $4 \sqrt{2} N^{1.5}-4 N$ crosspoints.

Cost is better than a crossbar, but not nearly the $O(N \log N)$ of the banyan.

The rearrangeable Clos network is a permutation network.
Usually just called a Clos network.
A generic Clos network with $m^{\prime}=m$.

Example, $k=4, m=2$:

Why m ?
Answer not as simple as strictly non-blocking Clos.
Will be covered after routing.

The Looping Algorithm

Looping algorithm used to route Clos networks in which $m=2$.
It can also route Clos networks in which m is a power of 2 .
Developed by Opferman and Wu. ${ }^{1}$

Definition

The dual of a 2×2 cell input is the other input to that cell.
The dual of a 2×2 cell output is the other output of that cell.
${ }^{1}$ D. C. Opferman and N. T. Tsao-Wu, "On a class of rearrangeable switching networks part I: control algorithms, part II: enumeration studies and fault diagnosis," Bell System Technical Journal, vol. 50, no. 5, pp. 1579-1618, May 1971.

1: Start loop: If all inputs routed, then done. Otherwise, choose an unrouted request, set input-stage cell arbitrarily.
2: Continue loop: Set middle and output stage cells.
3: For dual of output just routed:
4: Set middle-stage cell (back towards inputs).
5: If input-stage cell already set, goto Start loop. Otherwise consider dual of input, goto Continue loop.

$$
P=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 6 & 7 & 2 & 1 & 5 & 0
\end{array}\right) \quad P^{-1}=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 5 & 4 & 1 & 0 & 6 & 2 & 3
\end{array}\right)
$$

$\pi(\langle 0,0\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 0,1\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$
$\pi(\langle 0,2\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 0,3\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$
$\pi(\langle 1,0\rangle)=\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right) \pi(\langle 1,1\rangle)=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ & & & \end{array}\right)$
$\pi(\langle 2,0\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 2,1\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$
$\pi(\langle 2,2\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 2,3\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$

INPUT
INT N /* the number of inputs. */, P[N] /* the permutation */.

CONSTANTS

INT top=0, bottom=1, unset=N

INITIALIZE

INT unrouted=0, left=0, right, $\mathrm{PI}=$ Inverse (P)
INT LeftCell[i]=RightCell[i]=unset FOR i = 0 to N/2-1

BEGIN

DO\{
WHILE (LeftCell[unrouted] != unset) \{unrouted++\}
IF unrouted >= N/2 THEN RETURN ELSE left=2*unrouted ENDIF

DO\{
SWITCH
CASE (left MOD 2 == top): LeftCell[left/2]=0 /* Identity */
CASE (left MOD 2 == bottom): LeftCell[left/2]=1 /* Transpose */ ENDSWITCH
right=P[left]

SWITCH
CASE (right MOD 2 == top): RightCell[right/2]=0 /* Identity */
CASE (right MOD 2 == bottom):RightCell[right/2]=1 /* Transpose */ ENDSWITCH
left=(PI[right XOR 1]) XOR 1
IF LeftCell[left/2] != unset THEN QUITLOOP ENDIF
\}ENDDO
\}ENDDO

$$
P=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 6 & 7 & 2 & 1 & 5 & 0
\end{array}\right) \quad P^{-1}=\left(\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 5 & 4 & 1 & 0 & 6 & 2 & 3
\end{array}\right)
$$

$\pi(\langle 0,0\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 0,1\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$
$\pi(\langle 0,2\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 0,3\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$
$\pi(\langle 1,0\rangle)=\left(\begin{array}{cccc}0 & 1 & 2 & 3 \\ & & & \end{array}\right) \pi(\langle 1,1\rangle)=\left(\begin{array}{cccc}0 & 1 & 2 & 3 \\ & & & \end{array}\right)$
$\pi(\langle 2,0\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 2,1\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$
$\pi(\langle 2,2\rangle)=\left(\begin{array}{ll}0 & 1\end{array}\right) \quad \pi(\langle 2,3\rangle)=\left(\begin{array}{ll}0 & 1 \\ & \end{array}\right)$

Time Complexity

Initialization

Most of time spent computing permutation inverse: $O(N)$.
Number of iterations: $N / 2$ (one for each input-stage cell).
Operations per iteration:
(Iteration includes inner DO loops.)
Several operations, each taking $O(1)$ time.
Time complexity: $O(N)$.
Irony
Time to traverse network, 3 crosspoints.
Time to find path through, $O(N)$.
There are parallel algorithms which can route Clos network $m=2$ in $O(\log N)$ time.

There is no way that a permutation connection assignment could route itself, as in an omega network.

Clos Network Cost

$$
C(m, k)=2 k m^{2}+k^{2} m \quad \mathrm{xp} .
$$

Slightly Lower Cost Rearrangeable Clos Network
Replace any input- or output-stage cell with a link pattern.
This simplification due to Waksman ${ }^{1}$ and others.

Now how much do we pay?

$$
C(m, k)=(2 k-1) m^{2}+k^{2} m \quad \text { xp. }
$$

[^0]Proof of Rearrangeability of Clos Network
Due to Slepian (1952, unpublished) and Duguid (1959, just a technical report).

Called the Slepian-Duguid proof.

Proof outline:

I Show that a single center-stage cell can always be routed.
II Show that routing the remaining cells is equivalent to routing a smaller Clos network.

III Use induction on size.

Part I of Proof

Assertion: For any rearrangeable Clos network and any permutation connection assignment there is always a set of requests that can be routed through a middle-stage cell.

Part I proof outline:

- Description of something called a set of distinct representatives (SoDR).
- Description of how a SoDR relates to routing a single middlestage cell.
- Use of Hall's Theorem ${ }^{2}$ to prove the existence of a SoDR, in general.
- Use of Hall's Theorem to prove the existence of a SoDR, for Clos networks.

[^1]
Theorem of Distinct Representatives (Hall's Theorem)

Let S be a set, $A_{i} \subseteq S$, and $a_{i} \in A_{i}$ for $0 \leq i<k$.
The elements a_{i} are a set of distinct representatives (SoDR) of A_{i} if $a_{i} \neq a_{j}$ when $i \neq j$.

The theorem: there exists a set of distinct representatives of A_{i} if the union of any $\kappa \leq k$ subsets have at least κ distinct elements.

Stated another way: there exists a set of distinct representatives of A_{i} if

$$
\forall K \subseteq\langle k\rangle, \quad\left|\bigcup_{i \in K} A_{i}\right| \geq|K|
$$

Stated Using Balls and Urns

Let S be a set of balls, each of a different color.

$$
S=\{\mathrm{r}, \mathrm{w}, \mathrm{~b}\}
$$

Let there be k urns, denoted A_{i}, for $0 \leq i<k$.
Each urn has zero or more balls (the same kind as in S).

$$
A_{0}=\{\mathrm{r}, \mathrm{w}\}, A_{1}=\{\mathrm{r}, \mathrm{~b}\}, A_{2}=\{\mathrm{w}\} .
$$

Remove one ball from each urn.
These are a SoDR if each ball is a different color.

$$
a_{0}=\mathrm{r}, a_{1}=\mathrm{b}, \text { and } a_{2}=\mathrm{w} .
$$

It's not always possible to find a $S o D R$.
A SoDR exists iff there are $\kappa \leq k$ different color balls inside any combination of κ urns.

In the example above:
For $\kappa=1$: Urn 0,2 colors; urn 1, 2 colors; urn 2, 1 color.
For $\kappa=2$: Urn $0 \& 1,3$ colors; urn $0 \& 2$, 2 colors; urn $1 \& 2$, 3 colors.

For $\kappa=3$: Urn $0 \& 1 \& 2: 3$ colors.
So there exists a SoDR. (But we already knew that.)

Hall's Theorem and Clos' Network

The set S is a set of output-stage cell labels.
Consider request (a, α).
This request enters through cell $\langle 0,\lfloor a / m\rfloor\rangle$ and exits through cell $\langle 2,\lfloor\alpha / m\rfloor\rangle$.

Define $c((a, \alpha))=\lfloor\alpha / m\rfloor$.
The subsets A_{i} are the output-stage cells through which requests entering $\langle 0, i\rangle$ pass. That is,

$$
A_{i}=\{c((a, \alpha)) \mid(a, \alpha) \in P,\lfloor a / m\rfloor=i\}
$$

where P is a permutation connection assignment.
The SoDR are used to find the permutation to be realized by a middlestage cell:

$$
\pi(\langle 1,0\rangle)=\left(\begin{array}{cccc}
0 & 1 & \cdots & k-1 \\
a_{0} & a_{1} & \cdots & a_{k-1}
\end{array}\right) .
$$

For permutation

$$
\begin{aligned}
P & =\left(\begin{array}{lllllllccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
7 & 3 & 6 & 5 & 2 & 1 & 0 & 10 & 11 & 8 & 4 & 9
\end{array}\right), \\
A_{0} & =\{2,1,2\}, A_{1}=\{1,0,0\}, A_{2}=\{0,3,3\}, \text { and } A_{3}=\{2,1,3\} .
\end{aligned}
$$

One possible SoDR: $a_{0}=2, a_{1}=1, a_{2}=0, a_{3}=3$.

Proof That a SoDR Can Always be Found for a Clos Network

Consider the requests associated with input-stage cells in $K \subseteq\langle k\rangle$, $\kappa=|K|:$

$$
P^{\prime}=\{(a, \alpha) \mid(a, \alpha) \in P,\lfloor a / m\rfloor \in K\} .
$$

Consider the output-stage cells that these requests pass through:

$$
\mathcal{A}=\left\{c(A) \mid A \in P^{\prime}\right\}
$$

Obviously, $\left|P^{\prime}\right|=m \kappa$.
Since each output-stage cell can appear at most m times:

$$
|\mathcal{A}| \geq \frac{\left|P^{\prime}\right|}{m}=\frac{m \kappa}{m}=\kappa
$$

In other words, for any set of $\kappa \leq k$ input-stage cells there are requests to pass through at least κ output-stage cells.

Therefore, by Hall's Theorem, one request passing through each inputstage cell can be chosen that goes through a different outputstage cell.

These requests can be used to route a middle-stage cell.
This completes the proof of Part I.

Proof of Part II

Assertion: Finishing the routing of a $(3,(m, k, m),(k, m, k), T, T)$ Clos network in which a single middle-stage cell is routed is equivalent to the problem of routing an entire $(3,(m-1, k, m-1),(k, m-$ 1, k), T, T) Clos network.

This can easily be visualized:

Details will be omitted. (This would make a good homework or finalexam question.)

Part III: Denouement

Theorem: All of the $(3,(m, k, m),(k, m, k), \mathrm{T}, \mathrm{T})$ Clos Networks are permutation networks.

Proof by induction on m :
Basis: A Clos network with one center-stage cell (i.e., $m=1$) can always be routed.

Proof: By definition of the crossbar, or using Hall's Theorem as in Part I.

Inductive Hypothesis: All Clos Networks of size

$$
\left(3,\left(m^{\prime}, k, m^{\prime}\right),\left(k, m^{\prime}, k\right), \mathrm{T}, \mathrm{~T}\right)
$$

for, $0<m^{\prime}<m$, can be routed.
Assertion: If the IH is true then a $(3,(m, k, m),(k, m, k), \mathrm{T}, \mathrm{T})$ Clos Network can be routed.

Proof:
By Part I a single center-stage cell can be routed.
By Part II and the IH the remainder of the network can be routed by routing an appropriately constructed (3, $(m-1, k, m-1),(k, m-1, k), \mathrm{T}, \mathrm{T})$ network.

Thus, a $(3,(m, k, m),(k, m, k), \mathrm{T}, \mathrm{T})$ Clos Network can be routed.

[^0]: 1 Abraham Waksman, "A permutation network," Journal of the Association for Computing Machinery, vol. 15, no. 1, pp. 159-163, January 1968.

[^1]: ${ }^{2}$ P. Hall, "On representatives of subsets," Journal of the London Mathematics Society, vol. 10, pp. 26-30, 1935.

