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Recursive Decomposition of The Clos Network

Result is a much-lower-cost rearrangeable network.

In contrast, the network obtained when recursive decomposition
was applied to the Omega network had the same properties.

For scalable Clos networks with n > 1:

Center-stage cells are recursive.

Other cells are atomic.
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Two Methods To Compute Cost

The powerful way: write recurrence equations:

Let C(n, m) be cost of network of size n using m × m cells.

C(1, m) = m2 xp

C(n, m) = m2mn−1 xp +mC(n − 1, m) + m2mn−1 xp

= 2mn+1 xp +mC(n − 1, m)

Equations like this can easily (more or less) be solved in closed
form.

The easy? clever? way:

Observation: every stage consists of mn−1 cells.

Number of stages: 2n − 1.

C(n, m) = m2mn−1(2n − 1) xp

= mn+1(2n − 1) xp

Substituting N = mn and n = logm N :

C(N, m) = mN(2 logm N − 1) xp

Cost is almost twice the cost of an omega network.

But, it is much less than non-recursive Clos network.

And it’s still a permutation network.
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The Beneš Network

Named after V. Beneš, described in a 1962 BSTJ paper.

It is a recursively decomposed Clos network.

Boxes contain network at level:
123

Routing:

Use looping algorithm several times:

• We’re finished if network consists of a single 2×2 crossbar.

• Otherwise, use looping algorithm, remembering that this
is a recursive network.

Result is settings for first and last stages, and

permutations for two center-stage recursive cells.

• Route each center-stage recursive cell using this procedure.
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Routing Example
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Routing Example, Continued
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Routing Example, Continued.
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Routing Example, Finished.
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Minimum Cost Permutation Networks

Lower Bound on Permutation Network Cost

Result due to Shannon, BSTJ 1950.

Idea: Compare amount of information to code a permutation to amount
of information in Beneš network state.

Amount of information can be measured in number of bits.

Amount of information to code a permutation I(ΣN ) = log2 N !.

Using Sterling’s approximation:

I(ΣN ) = log2 N !

≈ log2

(√
2πN

NN

eN

)

=
1
2

log2 2πN + log2 NN − log2 eN

=
1
2

log2 2π2n + log2(2
n)(2

n) − log2 e(2n)

=
1
2

log2 π +
n + 1

2
log2 2 + n2n log2 2 − 2n log2 e

=
1
2

log2 π +
n + 1

2
+ n2n − 2n log2 e

=n2n − 2n log2 e +
n + 1

2
+

1
2

log2 π
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The number of bits to code a Beneš network state.

(When routing permutations) each cell can be in two states:

Identity and transpose.

So state of each cell can be coded with one bit.

The number of bits then is equal to the number of cells:

I(Beneš) = 2n−1(2n − 1) = n2n − 2n−1

I(ΣN ) = n2n − 2n log2 e +
n + 1

2
+

1
2

log2 π

The highest order terms of the two expressions are equal.

Therefore, the Beneš network is asymptotically optimal.

(Which is not quite as good as being optimal.)
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Correspondence Between Clos and Beneš Networks

Cells in Beneš network can be mapped to Clos in a many-to-one fash-
ion.

This mapping reveals important properties.

Used as basis for routing algorithm.

Used to determine which connection assignments the input- and
output-stage cells need to realize.
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13-11 13-11Example: Using Correspondence For Routing

Problem: How to route an m = 2µ, k = 2κ Clos network, µ > 1 and
µ + κ = n?

Solution: Route a N = 2µ+κ = 2n Beneš network . . .

. . . find Clos-network cell settings based on Beneš-network cell set-
tings.
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Correspondence Between Beneš and Clos, Formally

First, Models of Beneš and Clos Networks

Beneš Network LGM

I = { 〈I, j〉 | j ∈ 〈2n〉 } O = { 〈O, i〉 | i ∈ 〈2n〉 }
V = I ∪ O ∪ { 〈x, i〉 | x ∈ 〈2n − 1〉 , i ∈ 〈

2n−1
〉 }

E =
{

(〈I, i〉 , 〈0, i′〉) | i ∈ 〈2n〉 , i′ =
⌊

i

2

⌋ }
∪

{ (〈x, i〉 , 〈x + 1, i′〉) | x ∈ 〈n − 1〉 , i ∈ 〈
2n−1

〉
, d ∈ {0, 1},

i′ = i(n−2:n−1−x) d i(n−2−x:1) }∪

{(〈x, i〉 , 〈x + 1, i′〉) | x′ ∈ 〈n − 1〉 , x = x′ + n − 1, i ∈ 〈
2n−1

〉
,

d ∈ {0, 1}, i′ = i(n−2:x−n+2) i(x−n:0) d }∪

{ (〈2n − 2, i〉 , 〈O, i′〉) | i ∈ 〈
2n−1

〉
, d ∈ {0, 1}, i′ = 2i + d }

Clos Network LGM

I = { 〈I, j〉 | j ∈ 〈mk〉 } O = { 〈O, i〉 | i ∈ 〈mk〉 }
V = I ∪ O ∪ { 〈x, i〉 | x ∈ {0, 2}, i ∈ 〈k〉 } ∪ { 〈1, i〉 | i ∈ 〈m〉 }

E =
{

(〈I, i〉 , 〈0, i′〉) | i ∈ 〈mk〉 , i′ =
⌊

i

m

⌋ }
∪

{ (〈0, i〉 , 〈1, i′〉) | i ∈ 〈k〉 , i′ ∈ 〈m〉 }∪
{ (〈1, i〉 , 〈2, i′〉) | i ∈ 〈m〉 , i′ ∈ 〈k〉 }∪
{ (〈2, i〉 , 〈O, i′〉) | i ∈ 〈k〉 , d ∈ 〈m〉 , i′ = im + d }
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Mapping Function

This will not be a bijective map (as was used for equivalence).

Instead, several Beneš-network nodes (cells) will be mapped to a single
Clos-network cell.

Input and output labels do not change:

f(〈I, i〉) = 〈I, i〉 , f(〈O, i〉) = 〈O, i〉

For cells, consider a path in the Beneš and Clos networks.

Let all the cells in both networks be set to the identity state.

Consider stage 0 in the Clos network.

Consider stages 0 to µ − 1 in the Beneš network.

Consider a path from the same input through these stages in
both networks.

The cells on this path in the Beneš network are mapped to the
cell on this path in the Clos network.

0
1

3
2

4
5

6
7

8
9

10
11

12
13

14
15

0
1

3
2

4
5

6
7

8
9

10
11

12
13

14
15

0

1

3

2

4

5

6

7

8

9

10

11

12

13

14

15

0

1

3

2

4

5

6

7

8

9

10

11

12

13

14

15

13-13 EE 7725 Lecture Transparency. Formatted 11:57, 8 June 2001 from lsli19. 13-13



13-14 13-14

The equivalent mapping, mathematically:

Consider the first stage of both networks:

f(〈0, i〉) =
〈
0, bi21−µc〉

Consider the second stage of the Beneš network:

f(〈1, i〉) =
〈
0, bi22−µc mod 2n−µ

〉

For stages 0 to µ − 1:

f(〈x, i〉) =
〈
0, bi21−µ+xc mod 2n−µ

〉
for 0 ≤ x < µ.

A similar procedure is followed for the last µ stages:

f(〈2n − 2, i〉) =
〈
2, bi21−µc〉

f(〈2n − 3, i〉) =
〈
2, bi22−µ mod 2µc〉

f(〈x, i〉) =
〈
2, bi22n−1−x−µ mod 2µc〉

for 2n − 1 − µ ≤ x < 2n − 1.

The center-stages case is straightforward:

f(〈x, i〉) =
〈
1, bi21−n+µc〉

for µ ≤ x < 2n − 1 − µ.
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Proof that the Mapped Beneš Network is a Clos Network

Use the mapping function on the set of edges (from the Beneš) network
LGM definition.

Eliminate self edges. (E.g., (〈x, i〉 , 〈x, i〉)).
Compare the mapped-Beneš edges to the Clos edges.

If they are equal, then the mapped Beneš is a Clos network.
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Let EY (x) denote the stage-x to stage-(x+1) links in the Y ∈ {B,C}
network, where I + 1 = 0 and the B and C networks are just
what you’d think they would be.

The input-to-first-stage edges obviously correspond:

EB(I) =
{

(〈I, i〉 , 〈0, i′〉) | i ∈ 〈2n〉 , i′ =
⌊

i

2

⌋}

{ (〈
I, i(n−1:0)

〉
,
〈
0, i(n−1:1) | i ∈ 〈2n〉〉) } ∈ EB(I)

{ (
f

(〈
I, i(n−1:0)

〉)
, f

(〈
0, i(n−1:1)

〉)) | i ∈ 〈2n〉} ∈ f (EB(I))

=
{ (〈

I, i(n−1:0)

〉
,
〈
0, i(n−1:µ)

〉) | i ∈ 〈2n〉} ∈ EC(I)

Beneš-network links “inside” Clos network cells form self loops.

{ (〈
x, i(n−2:0)

〉
,
〈
x + 1, i(n−2:n−1−x) d i(n−2−x:1)

〉) } ∈ EB(x)
{ (

f
(〈

x, i(n−2:0)

〉)
, f

(〈
x + 1, i(n−2:n−1−x) d i(n−2−x:1)

〉)) }
∈ f (EB(x))

=
{ (〈

0, i(n−x−2:µ−x−1)

〉
,
〈
0, i(n−x−2:µ−x−1)

〉) }

for 0 ≤ x < µ − 1, where i ∈ 〈
2n−1

〉
and d ∈ 〈2〉.
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The stage-µ − 1 to stage-µ edges in the two networks should corre-
spond:

{ (〈
µ − 1, i(n−2:0)

〉
,
〈
µ, i(n−2:n−µ) d i(n−µ−1:1)

〉) }
∈ EB(µ − 1)

{ (
f

(〈
µ − 1, i(n−2:0)

〉)
, f

(〈
µ, i(n−2:n−µ) d i(n−µ−1:1)

〉)) }
∈ f (EB(µ − 1))

=
{ (〈

0, i(n−µ−1:0)

〉
,
〈
1, i(n−2:n−µ) d

〉) } ∈ EC(0)

where i ∈ 〈
2n−1

〉
and d ∈ 〈2〉.

Note that there is a one-to-one correspondence despite the fact that
edges for Clos network are specified differently.

Proof for the other network half is similar.

Use of Map for Routing

Start with connection assignment meant for Clos network.

Route this connection assignment on the Beneš network.

Let (a, α′)x be the stage-x link to which input a is routed.

Set input-stage crossbars using requests (a, α′′) where f(〈µ, α′〉) =<
1, α′′ >.
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Clos-Network Input and Output Stage Cells.

We have seen the correspondence between Clos and Beneš network
cells.

Only µ stages of Beneš-network cells are mapped to a Clos network
input- or output-stage cell.

This means the Clos network input- and output-stage cells do not have
to be crossbars.

In fact, they are terminal equivalent to inverse baseline and baseline
networks.

These are omega networks with the input- or output-stage shuffle re-
moved.
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