
EE 4702 Homework 2 Due: 23 February 2000
Homework 2 and 3 are being assigned simultaneously. Homework 3 is really just homework

2a, but calling it that would ruin the numbering scheme. Solution templates can be found in
/home/classes/ee4702/files/v and will be linked to the web page. Instructions for submission
will be posted later.

Problem 1: A tachometer measures rotation rate by detecting marks on a disk using photodetec-
tors as illustrated below.

In the illustration there are two rings of marks,
in this assignment only the outer ring (the one
with lots of marks) will be used.

As the disk spins the number of marks pass-
ing under the disk are counted. At fixed intervals
a rotation rate is updated.

Write a Verilog behavioral description for hard-
ware that determines the rotation rate using the
photodetector output. The module has the fol-
lowing declaration:

module tach1(rpx,pd,clk);
input pd, clk;
output rpx;
wire pd, clk;
reg [9:0] rpx;

parameter freq = 500; // Clock frequency.
parameter marks = 4; // Number of marks on ring.
parameter update_interval = 0.5; // Update every update_interval seconds.
parameter perwhat = 60; // Measure in revolutions per 60 seconds.

// Solution goes here.

endmodule

Input clk is a square wave for use by the module. Input pd is the photodetector output. It
is 1 when a mark is under the photodetector. Output rpx is the rotation rate. Parameter freq is
the frequency of clk and marks is the number of marks on a disk. Parameter update_interval
is the number of seconds between updates of rpx. For example, if update_interval were 3 then
rpx would have to be updated every 3 seconds. Parameter perwhat is the time unit for measuring
revolutions, in seconds. If it is 60 then rpx should be in revolutions per minute, if it is 1 then rpx
should be in revolutions per second, etc.

Consider the instantiation below:

tach1 #(200) s1(rpx,pd,clk);

This instantiates a tachometer which is to use a 200 MHz clock.
Call perwhat

marks×update interval
the precision, p. Let nm denote the number of marks that have been

counted in a time interval of duration update_interval. Then rpx should be set to nm × p.

1



In addition to generating rpx the module should also check to make sure its parameters are
suitable. The parameters are not suitable if the precision is not an integer or if any registers would
overflow in normal operation.

Use the testbenches provided in the solution template to test your circuit. Testbench module
test_tach1_fast tests a single instance, while test_tach1_detailed tests several instances (using
different parameters).

Follow the following rules when writing the hardware description. (The rules do not apply to
testbench code.)

• Do not use multipliers or dividers.

• Do not use delays: #3 i=1;. You can use event controls: @(posedge clk).

• Use the initial block for parameter verification and register initialization only.

To be continued in homework 3 . . .

2


